
Actes JIAF 2024

Combinatorial Games with Incomplete Information∗

Junkang Li1,2 Bruno Zanuttini2 Véronique Ventos1

1NukkAI, Paris, France
2Normandie Univ.; UNICAEN, ENSICAEN, CNRS, GREYC, 14 000 Caen, France
junkang.li@nukk.ai bruno.zanuttini@unicaen.fr vventos@nukk.ai

Résumé

Les jeux à information incomplète modélisent des in-
teractions multi-agents dans lesquelles les joueurs n’ont pas
connaissance commune du jeu auquel ils jouent. Nous pro-
posons une généralisation minimale du formalisme des jeux
combinatoires afin d’incorporer l’information incomplète :
les jeux combinatoires à information incomplète (CGII). La
caractéristique la plus importante des CGII est que toutes les
actions sont publiques, ce qui permet de mieux visualiser la
connaissance et l’information incomplète de chaque joueur.
Pour motiver davantage l’étude de ce nouveau formalisme,
nous montrons que le calcul des stratégies optimales pour
les CGII a exactement la même complexité algorithmique
que pour les jeux généraux sous forme extensive.

Abstract

Games with incomplete information model multi-agent
interaction in which players do not have common knowledge
of the game they play. We propose a minimal generalisation
of combinatorial games to incorporate incomplete informa-
tion, called combinatorial game with incomplete information
(CGII). The most important feature of CGIIs is that all ac-
tions are public, which allows better visualisation of each
player’s knowledge and incomplete information. To further
motivate the study of this new formalism, we show that
computing optimal strategies for CGIIs has the same com-
putational complexity as for general extensive-form games.

1 Introduction

Game theory is a mathematical framework for studying
multi-agent interactions. We focus on extensive-form games
(EFG), in which the interaction between agents takes place
sequentially, i.e. every agent takes turns to make a move.
Prominent examples of such games are Chess and Go.

∗This article is to be published in the proceedings of the 33rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2024). A long
version with proofs of all claims is available at https://hal.science/
hal-04568854.

Of particular interest to us is the notion of games with
incomplete information, which are games in which agents
do not have common knowledge of the game they play. For
instance, an agent does not know the number of participants
in an auction, or how much these participants value the
object to be sold; a Poker player does not see the cards in
their opponent’s hidden hands, hence cannot know for sure
the exact consequence (i.e. payoff) of calling and raising
bets; a Bridge or Hearts player does not know the cards that
their opponent can play during a trick since this depends on
their hidden hand; etc.

The notion of (in)complete information is frequently con-
fused with the one of (im)perfect information. Complete
information describes situations in which the whole struc-
ture of a game (the number of players, the game tree, the
information sets of each player, the owner of each node,
the payoff for each player at each leaf node, etc.) is com-
mon knowledge among all the players of the game. On the
other hand, perfect information is a more stringent require-
ment than complete information. Not only the structure of
the game is common knowledge, but all players have full
observability and perfect recall of the history (which is es-
sentially a record of every decision made by every player
so far). In other words, players always know their exact
position in the game tree when asked to make the next deci-
sion. To summarise, incomplete information is an example
of imperfect information; see Faliszewski et al. [15, Sec.
2.4.2].

We propose a new and minimal formalism for EFGs with
incomplete information that we call combinatorial games
with incomplete information (CGIIs). In such a game,
Nature picks a world from a universe according to some
common prior; each player may have different observability
of this world. Then, the game proceeds sequentially, during
which there is no chance factor and all moves by the players
are publicly observable. This formalism is designed to
be a minimal generalisation of the notion of combinatorial
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games (which are Boolean games of no chance and with
perfect information; see Siegel [39]) and to closely capture
the epistemic aspect of games with incomplete information.

For such games, we are interested in knowing how much
reward an agent or a team of agents can guarantee for them-
selves; this corresponds to the notion of maxmin value, well
known in optimisation under uncertainty, in which we aim
to ensure that the worst possible outcome is not too bad.

By design, our new formalism seems particularly restric-
tive when compared to general EFGs, where hidden actions
and arbitrary chance nodes are allowed. However, we show
that the computational complexity of computing optimal
strategies (with respect to the maxmin value) for CGIIs is
as hard as for EFGs, which allows concluding that the dif-
ficulty of playing games comes from incomplete informa-
tion/knowledge alone, not from hidden actions or mid-game
chance factors. This also justifies that restricting algorith-
mic studies to CGIIs is without loss of generality. We also
give a construction to enforce coordination between play-
ers in CGIIs under the constraint of public actions, which
allows modelling situations similar to concurrent actions.

2 Related Work

Game theory. The study of games with incomplete in-
formation was pioneered by Harsanyi [22, 23, 24], who
proposes a formalism to model games of incomplete infor-
mation as EFGs with imperfect information. This formal-
ism, called the Harsanyi model of incomplete information,
introduces types of players, or equivalently, a universe of
worlds for which each player has a potentially different
partial observability (also called the Aumann model of in-
complete information). For detailed and formal definitions,
see textbooks on game theory, e.g. Maschler et al. [31,
Chapter 9].

Combinatorial games, the inspiration of our formalism
of CGII, are studied in the field of combinatorial game the-
ory, established in the 70s by two books by Conway [13]
and Berlekamp et al. [3, 4, 5, 6]. For recent advances
in this field, see Nowakowski [33, 34, 35], Albert and
Nowakowski [1], and Larsson [29].

Our formalism is also inspired by Frank and Basin [16],
who, in order to model the card play phase of the card game
Bridge, propose a game with public actions and one-sided
incomplete information in which the opponent has com-
plete information. Frank and Basin [17] show that finding
optimal pure strategies for these games is NP-complete.
Ginsberg [20] proposes the first exact algorithm for these
games, and implements it for Bridge robots. Parallelly, Chu
and Halpern [11] study a model of games with incomplete
information with common payoffs, and only one round of
concurrent interaction after Nature picks the world; they
show that it is NP-complete to play such games optimally.

Like us, Kovarík et al. [27] highlight the distinction be-

tween public and private actions. They also argue that this
distinction, essential for recent search algorithms, is par-
tially lost when we model sequential multi-agent interaction
with EFGs, which do not explicitly tell whether an action
is public or not. They propose an alternative model for
stochastic games that makes this distinction prominent, and
show how to transform such models to augmented EFGs
and vice versa.

Complexity of games. Most work in the literature on the
computational complexity of games concerns the complex-
ity of finding Nash equilibria, especially for normal-form
games [18, 14]. For more references, see Conitzer and
Sandholm [12], who also show that it is NP-complete to
decide whether Nash Equilibria with certain natural prop-
erties exist.

Koller and Megiddo [25], Koller et al. [26], and von
Stengel [41] make seminal contributions to understanding
the complexity of two-player zero-sum EFGs. They also
give polynomial-time algorithms for computing behaviour
maxmin strategies of EFGs with perfect recall, based on
linear programming.

Maxmin for a team of players with common payoffs is
called team maxmin equilibrium (TME) in the literature,
and was first proposed by von Stengel and Koller [42].
Basilico et al. [2] and Celli and Gatti [8] propose another no-
tion called TMECor (“Cor” stands for “correlation”), which
allows agents in the same team to access a correlation device
in order to coordinate their mixed strategies. Building on
these works, Gimbert et al. [19] and Zhang et al. [43] study
the complexity of TME and TMECor, thereby yielding a
relatively complete picture of the complexity of behaviour
and mixed maxmin for two-team EFGs.

The complexity of other models of decision making have
also been extensively studied, e.g. Markov decision process
[32, 7, 21], propositional planning [37], graph games [10,
9]. Similar to these works, we confirm the intuition that
partial observability and multi-agent coordination increases
the difficulty of optimal decision making.

3 Combinatorial Games with Incomplete In-
formation

3.1 Definitions

Combinatorial games are EFGs of no chance and with per-
fect information. To generalise this formalism minimally
to allow incomplete information, we propose the following
definition.

Definition 3.1 (CGII). A combinatorial game with incom-
plete information (CGII) is a tuple of the following ele-
ments:



• An Aumann model ⟨𝑈, 𝐴, (R𝑖)𝑖∈𝐴, 𝜌⟩, where 𝑈 is a
finite set of worlds called universe, 𝐴 is a set of agents,
R𝑖 is an equivalence relation over 𝑈 for each agent
𝑖 ∈ 𝐴, and 𝜌 ∈ Δ(𝑈) is a probability distribution over
the universe called common prior;

• A tree 𝑇 called public tree, the nodes of which (N(𝑇))
are partitioned into {N𝑖 (𝑇)}𝑖∈𝐴 ∪ L(𝑇), where L(𝑇)
is the set of all leaves;

• A reward function 𝑢𝑖 : L(𝑇) ×𝑈 → R for each 𝑖 ∈ 𝐴.

Note that the children of a node (available actions at that
node) do not depend on the real (and partially observable)
world 𝜔; only the rewards depend on 𝜔.

A CGII is said to be Boolean if all its reward functions
have values in B.1 The Aumann model of a CGII defines
each agent’s observability over the universe, which charac-
terises their incomplete information.

Pure strategies in a CGII. A CGII as an EFG with in-
complete information proceeds as follows. First, Nature
picks the real world 𝜔 ∈ 𝑈 according to 𝜌. Then the state
game in 𝜔 proceeds from the root of the public tree 𝑇 ;
agents take turns to pick a child of the current node, de-
pending on their equivalence class of the real world. This
continues until a leaf 𝑙 is reached, and agent 𝑖 receives a
payoff 𝑢𝑖 (𝑙, 𝜔).

Definition 3.2 (Pure strategy). A pure strategy of an agent
𝑖 ∈ 𝐴 is a mapping 𝑠𝑖 : N𝑖 (𝑇) ×𝑈 → N(𝑇) such that for
all 𝑣 ∈ N𝑖 (𝑇):

• For all 𝜔 ∈ 𝑈, 𝑠𝑖 (𝑣, 𝜔) is a child of 𝑣;

• ∀𝜔, 𝜔′ ∈ 𝑈, 𝜔R𝑖𝜔
′ =⇒ 𝑠𝑖 (𝑣, 𝜔) = 𝑠𝑖 (𝑣, 𝜔′).2

The set of all pure strategies of agent 𝑖 is denoted by ΣP
𝑖
.

From the definition of a strategy, one can see that the
actions of every agent are indeed public: when making a
decision at a node, an agent knows perfectly where the node
is in the public tree, which in particular means they observe
and remember the actions picked by every agent in the past,
starting from the root of the public tree. In addition, com-
pared to general games with incomplete information, the
state games of a CGII have the particularity that they share
the same game tree 𝑇 , which does not have chance nodes.
These three features (public actions, unique game tree, and
no chance) are the defining features of our formalism CGII.

Each CGII describes an EFG in which Nature picks the
real world at the root, and information sets are determined
by the players’ observability of the world.

1In Boolean games, the rewards 0 and 1 are interpreted as a loss and a
win, respectively.

2This means agent 𝑖 must pick the same child for a node in any two
worlds indistinguishable by them.
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Figure 1: The public tree of a CGII and the game tree of its
corresponding EFG, both with rewards omitted.

Example. Consider the following CGII: the public tree is
shown in Figure 1 (on the left); the universe reads {𝜔0, 𝜔1};
agent 2 can distinguish these two worlds while agent 1 can-
not. This CGII models a variant of Matching Pennies with
incomplete information. The game tree of its corresponding
EFG is also shown in Figure 1 (on the right).

On the right, since agent 1 cannot observe the real world,
they must play H in both state games, or T in both. This
constraint is respected by the notion of strategies in a CGII:
on the left, agent 1 only has two pure strategies H and T
since 𝜔0 and 𝜔1 are indistinguishable by agent 1.

Similarly, on the right, agent 2 can pick between heads
or tails, depending on the choices of Nature and agent 1.
On the left, agent 2 can again pick between heads or tails,
depending on agent 1’s choice and the real world, since
agent 2 can distinguish between 𝜔0 and 𝜔1; note that the
latter point is not reflected by the public tree, but by the
Aumann model.

Teams and Information in a CGII. In a CGII, agents 𝑖
and 𝑗 are said to be in the same team if 𝑢𝑖 = 𝑢 𝑗 .

Definition 3.3 (Team). A team is an inclusion-wise maxi-
mal group of agents with the same reward function.

We now define a team’s degree of incomplete informa-
tion.

• Multi-agent incomplete information (MA-II): an arbi-
trary team.

• Single-agent incomplete information (SA-II): a team of
agents with the same equivalence relation (i.e.R𝑖 = R 𝑗

for all agents 𝑖 and 𝑗 in the team).

• Complete information (CI): a team whose agents all
have the finest equivalence relation (i.e.R𝑖 = {(𝜔, 𝜔) |
𝜔 ∈ 𝑈} for all agents 𝑖 in the team).

In particular, CI implies SA-II, which implies MA-II. In-
tuitively, a team is a group of decentralised agents with
shared interests working cooperatively. In a CGII, a team
with SA-II can be regarded as one single agent since every



agent in this team has the same information and all actions
are public.

Example. In the CGII in Figure 1, if the two agents have the
same reward function, then they are in a team with MA-II;
otherwise, each is a (single-agent) team with SA-II.3

Due to the public actions property, there is a close link
between the degree of incomplete information of a team
in a CGII and the degree of imperfect information of the
corresponding team in the EFG defined by the CGII:

• a team with CI in the CGII is a player with perfect
information in the EFG;

• a team with SA-II in the CGII can be seen as a single
player with perfect recall in the EFG;

• a team with MA-II in the CGII is a team of players
who all have perfect recall in the EFG.

This correspondence will allow us to establish upper bounds
on the complexity of solving CGIIs.

Team maxmin in a CGII. Let (𝑠1, . . . , 𝑠𝑛) ∈ ΣP
1 ×· · ·Σ

P
𝑛,

where 𝑛 = |𝐴|, be a pure strategy profile. We write
(𝑠1, . . . , 𝑠𝑛) (𝜔) for the unique leaf reached under this pro-
file when the real world is 𝜔.

Definition 3.4 (Expected utility). The expected utility for
an agent 𝑖 ∈ 𝐴 under a pure strategy profile (𝑠1, . . . , 𝑠𝑛) is
defined to be:

U𝑖 (𝑠1, . . . , 𝑠𝑛) =
∑︁
𝜔∈𝑈

𝜌(𝜔)𝑢𝑖
(
(𝑠1, . . . , 𝑠𝑛) (𝜔), 𝜔

)
.

Let T ⊆ 𝐴 be a team. Notice that all agents in a team
share the same expected utility function, which we denote
by UT . A pure strategy of the team is uniquely defined
by the pure strategy of each of its players. In particular,
the set of pure strategies of a team T , denoted by ΣP

T , is
in bijection with

∏
𝑖∈𝐴 Σ

P
𝑖
. In the following, we also write

ΣP
−T =

∏
𝑖∉T ΣP

𝑖
, the set of pure strategy profiles of the

players not in T .

Definition 3.5 (Pure maxmin for a team). The pure maxmin
value for a team T ⊆ 𝐴 is defined to be

𝑣T := max
𝑠T ∈ΣP

T

min
𝑠−T ∈ΣP

−T

UT (𝑠T , 𝑠−T).

Intuitively, this value is the largest expected reward that
a team can guarantee to get by playing a pure strategy.

The notion of behaviour/mixed strategy can be defined
similarly to the one for EFGs: a mixed strategy of an agent
𝑖 is a probability mixture of pure strategies of 𝑖; a behaviour
strategy of 𝑖 picks, at each node and for each equivalence

3The team of agent 2 even has CI.
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Figure 2: Two EFGs for Matching Pennies.

class of R𝑖 , a probability mixture of children (instead of
just a child as for pure strategies). Hence, expected util-
ity with respect to behaviour/mixed strategy profiles and
behaviour/mixed maxmin for a team can be similarly de-
fined.4

In the following, we focus on zero-sum two-team CGIIs.
We call the two teams player MAX and player MIN, and
denote them by + and −, respectively.

3.2 Motivation for CGIIs

Our motivations for introducing CGII as a subclass of games
with incomplete information are multiple. First and fore-
most, the formalism of CGII aims to be a minimal gener-
alisation of combinatorial games to allow incomplete in-
formation. Indeed, it is clear that a CGII with a singleton
universe is a combinatorial game. This new formalism
allows modelling a number of card games, notably Bridge.5

But more importantly, the formalism of CGII also aims to
minimally capture the notion of knowledge and incomplete
information. Due to the public actions property, the only
source of the imperfect (in particular, incomplete) informa-
tion of every agent comes from their partial observability
of the real world, drawn at the beginning of a game.

In contrast, we argue that the distinction between perfect
and imperfect information does not completely capture the
essence of players’ knowledge. For example, in the game
Matching Pennies, MAX and MIN pick a side of a coin
concurrently; this can be modelled by two different EFGs,
shown in Figure 2. In the EFG on the left, MAX has
perfect information while MIN has imperfect information
but perfect recall; and in the EFG on the right, the situation
is reversed. However, the roles of MAX and MIN are
symmetric in Matching Pennies; MAX also has exactly the
same information/knowledge in both EFGs when they need
to choose an action. Hence, considering CGIIs allows one
to focus on an unambiguous notion of knowledge of the
players, as captured by the Aumann model and the initial
drawing of a world.

4Behaviour maxmin and mixed maxmin are commonly known as TME
and TMECor in the literature [8].

5The card play of Bridge can be described as a CGII in which MAX
has SA-II and MIN has MA-II.



Expressiveness. At first sight, the requirements of public
actions and no chance seem particularly restrictive: many
popular tabletop games with incomplete information allow
private actions (e.g. concealed Kong in Mahjong, pass in
Hearts) or have randomness and chance factors besides the
initial drawing (e.g. dice rolls during a game). One may
worry that, due to these restrictions, CGII is not expressive
enough to be conceptually or algorithmically interesting.
However, we argue that this impression is not correct.

First, an initial drawing over the universe is actually quite
expressive. For example, for the dice rolls we evoke above,
if their number and occasions are fixed in advance, then their
results can be encoded into the initial drawing of worlds.6
Another example is given by video games, which typically
use a random seed as the sole source of randomness for
all procedurally generated levels and random events dur-
ing a playthrough. Similar ideas have been investigated in
automated planning [36, Sec. 10].

Second, even with only public actions, we show in sub-
section 4.1 that we can still design a game to force a team
of players to coordinate their actions. This means that
we can essentially encode concurrent actions (as in stan-
dard Matching Pennies) using only public actions (and no
chance except the initial drawing).

All in all, we suggest that at least as far as computation of
optimal strategies is concerned, CGII, rather than EFG, be
the right model for studying sequential multi-agent interac-
tions depending on each player’s knowledge. Moreover, as
we will show, CGIIs are as hard to solve as EFGs, which
confirms our intuition that the difficulty of a game actually
comes from the incomplete information of a player, and not
from their inability to observe the moves made by the other
players.

4 Complexity of Pure Maxmin for CGIIs

The decision problem Pure Maxmin is defined as follows.

Definition 4.1 (Pure Maxmin). Let G be a class of zero-
sum CGIIs. Then Pure Maxmin(G) is the following deci-
sion problem.

Input A CGII 𝐺 ∈ G and a rational number 𝑚.

Output Decide whether the pure maxmin value for team
MAX in 𝐺 satisfies 𝑣+ (ΣP

+, Σ
P
−) ≥ 𝑚.

We study the complexity of Pure Maxmin for CGIIs
depending on the degrees of incomplete information for
MAX and MIN: complete information (CI), single-agent
incomplete information (SA-II), multi-agent incomplete in-
formation (MA-II). For complexity analyses, we consider
the parameters |𝑇 | (number of nodes in the public tree),

6This will only enlarge the game tree by a polynomial factor.

MAX
MIN CI SA-II MA-II

CI P NP-c 𝚺P
2 -c

SA-II NP-c NP-c 𝚺P
2 -c

MA-II NP-c NP-c 𝚺P
2 -c

Table 1: Complexity of Pure Maxmin for CGIIs.

|𝑈 | (number of worlds), and possibly the number of bits to
encode the utilities, the common prior, and the threshold 𝑚.

The complexity of Pure Maxmin is summarised in Ta-
ble 1. By definition, the complexity of each case is in-
creasingly monotone in both MAX’s and MIN’s degree of
incomplete information (CI/SA-II/MA-II). Hence, only a
few hardness results have to be proved to establish the ta-
ble. The results written in bold font are new from this work;
the others can be directly deduced from the literature.

The membership results in Table 1 follow from results
by Koller and Megiddo [25, Sec. 3.3]; in particular, mem-
berships in NP and in ΣP

2 follow from the fact that given a
strategy of MAX, computing MIN’s best response is a prob-
lem in coNP, and even linear time when MIN has perfect
recall.

Hence, we focus on hardness results. The following
result is by Frank and Basin [17, Sec. 6].7

Proposition 4.2. Pure Maxmin is NP-hard for Boolean
CGIIs in which MAX has SA-II and MIN has CI.

The symmetric case does not trivially follow from this
result (since the minimax theorem does not hold for pure
strategies) and necessitates a proof:

Proposition 4.3. Pure Maxmin is NP-hard for Boolean
CGIIs in which MAX has CI and MIN has SA-II.

Proof sketch. By a reduction from Vertex Cover. Given
a graph (𝑉, 𝐸), consider the universe 𝑈 = {𝜔𝑒 | 𝑒 ∈ 𝐸};
the worlds are observable by MAX but not by MIN. During
the game, MAX picks a vertex 𝑣 ∈ 𝑉 , then MIN picks an
edge 𝑒′ ∈ 𝐸 . In a world 𝜔𝑒 ∈ 𝑈, MAX gets a payoff of 1 if
𝑣 covers 𝑒 and MIN does not correctly guess this edge (i.e.
𝑒′ ≠ 𝑒); otherwise, MAX gets 0. One can verify that the
pure maxmin value of this game is at least 1 − 𝑘/|𝐸 | if and
only if the graph has a vertex cover of size at most 𝑘 . □

4.1 Multi-Agent Coordination in CGIIs

Coordination game. Now we turn our attention to CGIIs
with multi-agent teams. We first show how to construct
CGIIs to impose a perfect coordination between agents from
the same team (à la Matching Pennies).

7In their setting, there is no prior over the worlds; they are interested in
the strategies that win in the greatest number of worlds. This is equivalent
to finding maxmin strategies with respect to the uniform prior in our
setting.
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Figure 3: The public tree of the coordination game.

Consider the following Boolean CGII, which we call
coordination game. This game has two agents of MAX,
referred to as MAX 1 and MAX 2, and no agent of MIN;
its universe has 4 worlds and reads𝑈 = {(𝑏1, 𝑏2) | 𝑏1, 𝑏2 ∈
B}; its Aumann model has the uniform common prior and
is such that for 𝑖 = 1, 2, MAX 𝑖 only observes 𝑏𝑖; its public
tree is shown in Figure 3; the reward for MAX is 1 if and
only if 𝑎1 ⊕ 𝑏1 = 𝑎2 ⊕ 𝑏2, where ⊕ is the exclusive or of
two bits and 𝑎𝑖 is the action chosen by MAX 𝑖.

We refer to 𝑏𝑖 as the hidden bit of MAX 𝑖 since it is only
observable by MAX 𝑖. The coordination game is designed
in such a way that MAX 1 and MAX 2 must perfectly
coordinate their answer in order to win. Intuitively, MAX 1
and MAX 2 need to agree on the same answer 𝐴 ∈ B, then
stick to it during the game by playing 𝑎𝑖 = 𝐴 ⊕ 𝑏𝑖 . Indeed,
if they employ this strategy, then they guarantee a win since

𝑎1 ⊕ 𝑏1 = (𝐴 ⊕ 𝑏1) ⊕ 𝑏1 = 𝐴 = (𝐴 ⊕ 𝑏2) ⊕ 𝑏2 = 𝑎2 ⊕ 𝑏2.

Remark. Under these two winning strategies (one for each
value of 𝐴), both MAX 1 and 2 pick the actions 0 and 1
with equal probability. Indeed, once the common answer 𝐴
is fixed, which action to play by MAX 𝑖 is dictated by their
hidden bit 𝑏𝑖 . Hence, the bits 𝑏1 and 𝑏2 act as the keys of
a one-time pad to encrypt/mask the intended answer (i.e.
𝐴) of MAX 1 and 2. This is the key element to ensure that
MAX 1 and 2 must cooperate without cheating.

Proposition 4.4. In a coordination game, the only winning
pure strategies of team MAX are of the following form: for
some 𝐴 ∈ B, MAX 1 plays 𝐴 ⊕ 𝑏1 and MAX 2 plays 𝐴 ⊕ 𝑏2.

Proof. Notice that the pure strategies of MAX 1 can be
written in the form (𝑎0

1, 𝑎
1
1), which means they choose 𝑎0

1
if 𝑏1 = 0 and 𝑎1

1 if 𝑏1 = 1. As for MAX 2, they have the
right to pick 𝑎2 as a function of 𝑎1 and 𝑏2. If MAX 1 plays
(𝐴, 𝐴) (i.e. they play 𝐴 regardless of 𝑏1) for some 𝐴 ∈ B,
then MAX 2 has no winning strategy, since the winning
condition 𝐴 ⊕ 𝑏1 = 𝑎2 ⊕ 𝑏2 cannot be satisfied for both
values of 𝑏1. Now if MAX 1 plays (𝐴, 𝐴 ⊕ 1) for some
𝐴 ∈ B, then to satisfy the winning condition, MAX 2 is
forced to play 𝑎2 = 𝐴 ⊕ 𝑏2; hence 𝑎𝑖 = 𝐴 ⊕ 𝑏𝑖 . □

The same reasoning also shows that these pure strategies
are also the only winning behaviour strategies, and that the
winning mixed strategies are exactly the mixtures of them.

Remark. From this proof, one can see that if MAX 1 cheats
by using their hidden bit 𝑏1 incorrectly (i.e. does not use 𝑏1
to encrypt their intended answer and always picks the same
action), then MAX 2 cannot cooperate perfectly since they
cannot observe the value of 𝑏1.

In addition, when MAX 1 plays correctly (i.e. chooses
a strategy of the form (𝐴, 𝐴 ⊕ 1)), then MAX 2 must also
pick 𝐴 as their intended answer and mask it with their own
bit 𝑏2 in order to win. Notice that in this case, the action
picked by these two agents are uniformly and independently
distributed. This is an important feature since agents (of
MAX or MIN) in the following part of the game tree cannot
deduce any information about the intended answer of these
two agents by observing only their actions.

Interrogation game. We now generalise the coordination
game to the following situation: we have a finite set of
questions 𝑄, and MAX has a Boolean answer for each
question {𝐴𝑞 ∈ B}𝑞∈𝑄, or equivalently a mapping from 𝑄

to B. We wish to verify whether MAX’s mapping satisfies
some given binary constraints {𝐶𝑞𝑞′ ⊆ B2 | 𝑞, 𝑞′ ∈ 𝑄, 𝑞 ≠

𝑞′}: MAX’s mapping is said to be valid if it satisfies all the
constraints, that is, (𝐴𝑞 , 𝐴

′
𝑞) ∈ 𝐶𝑞𝑞′ for all 𝐶𝑞𝑞′ .

Example. For cliques of a given graph, the questions are
the vertices of this graph; MAX’s mapping induces a sub-
graph (MAX’s answer to a vertex corresponds to whether to
include this vertex in their intended subgraph); the binary
constraints impose the requirement that all vertices in this
subgraph be connected. Then MAX’s mapping is valid if
and only if it describes a clique of the graph.

To model this situation, consider the following Boolean
CGII, which we call interrogation game: two agents of
MAX (MAX 1 and MAX 2), and no agent of MIN; the
universe reads 𝑈 = {(𝑞1, 𝑏1, 𝑞2, 𝑏2) | 𝑞1, 𝑞2 ∈ 𝑄, 𝑏1, 𝑏2 ∈
B}; the Aumann model is such that for 𝑖 = 1, 2, MAX 𝑖

only observes 𝑞𝑖 and 𝑏𝑖; the common prior is uniform; the
public tree is the same one as for the coordination game
(i.e. the one in Figure 3); MAX loses if and only if either
(1) 𝑞1 = 𝑞2 but 𝑎1 ⊕ 𝑏1 ≠ 𝑎2 ⊕ 𝑏2 or (2) 𝑞1 ≠ 𝑞2 but
(𝑎1 ⊕ 𝑏1, 𝑎2 ⊕ 𝑏2) ∉ 𝐶𝑞1𝑞2 .

This CGII has size O(|𝑄 |2): the universe has size
O(|𝑄 |2), while the public tree has size O(1). Notice that a
coordination game is just an interrogation game with only
one question (hence no binary constraint). We refer to
(𝑞𝑖 , 𝑏𝑖) as the hidden information of MAX 𝑖. Inspired by
the coordination game, we propose the following definition.

Definition 4.5 (Perfect coordination). In an interrogation
game, a perfect coordination of team MAX is a pure strategy
of MAX of this form: there is a set {𝐴𝑞 ∈ B}𝑞∈𝑄 such that
for all 𝑖, MAX 𝑖 will play the action 𝑎𝑖 = 𝐴𝑞𝑖 ⊕ 𝑏𝑖 in all
worlds in which their hidden information is (𝑞𝑖 , 𝑏𝑖). For



such a strategy, the set {𝐴𝑞}𝑞∈𝑄 is called the intended
mapping or intended answer of the perfect coordination.

By a similar argument to the one for the coordination
game, the reward condition (1) ensures that MAX 1 and
2 have an incentive to implement a perfect coordination,
which is a dominant strategy. In other words, (1) imposes
non-adaptivity of MAX’s answers. As for the reward con-
dition (2), it ensures that all binary constraints are satisfied
by the intended mapping of a perfect coordination, since by
(1) we have 𝑎𝑖 ⊕ 𝑏𝑖 = 𝐴𝑞𝑖 for all 𝑖. In summary, we have
established the following result.

Proposition 4.6. In an interrogation game, a pure strat-
egy of team MAX is winning if and only if it is a perfect
coordination with a valid intended mapping.

It is straightforward to construct interrogation games in-
volving team MIN such that if MIN does not cooperate,
MAX receives a large reward. Similarly, we can also ex-
tend the construction above to allow 𝑘-ary constraints with
𝑘 ≥ 2. The interrogation game will then involve 𝑘 agents of
MAX, each with their hidden information (𝑞𝑖 , 𝑏𝑖), and has
size O(2𝑘 |𝑄 |𝑘). Such an interrogation game can be used to
encode problems such as 𝑘-SAT.8

4.2 Hardness for Two-Team CGIIs

With the gadgets of interrogation game, it is straightforward
to show that Pure Maxmin is ΣP

2 -hard for CGIIs in which
both MAX and MIN are multi-agent teams, for instance by
a reduction from the canonical problem ∃∀3SAT. However,
we provide a stronger result: ΣP

2 -hardness holds even when
MAX has complete information.

Proposition 4.7. Pure Maxmin is ΣP
2 -hard for CGIIs in

which MAX has CI and MIN has MA-II.

Proof sketch. By a reduction from the ΣP
2 -complete prob-

lem Succinct Set Cover [40]: given a collection of 3-DNF
formulae and an integer 𝑘 , decide whether there is a subset
𝑆 of size at most 𝑘 the disjunction of which is a tautology.

We design a game in which Nature draws a DNF formula
from the collection, 3 variables, and 4 hidden bits, according
to the uniform common prior. The DNF is known to MAX,
who plays 1 or 0 according to whether it should be in 𝑆.
This answer is masked (to MIN) by the hidden bit of MAX,
as in a coordination game. Then MIN chooses either to
verify the size of 𝑆 or to verify that the disjunction of 𝑆 is
a tautology. The other 3 hidden bits are used in the latter
verification: MIN plays an interrogation game over the 3
variables, with the constraint to falsify the disjunction of 𝑆.

Finally, since MAX is designed to have CI, they know the
variables and the hidden bits of MIN. To ensure that MAX

8Contrastingly, we leave open the problem of constructing an interro-
gation game in which MAX’s answers are not binary.

MAX
MIN CI SA-II MA-II

CI P P coNP-c
SA-II P P coNP-c

MA-II NP-c NP-c 𝚺P
2 -c/𝚫P

2 -c

Table 2: Complexity of Behaviour Maxmin and of Mixed
Maxmin for CGIIs.

does not play a strategy that depends on MIN’s information,
we introduce one additional agent of MIN whose role is to
punish MAX whenever MAX plays such a strategy. □

Remark. The construction shows something stronger: ΣP
2 -

hardness holds even when MIN has joint complete informa-
tion (i.e. if the agents of MIN could pool their information,
then they would have complete information).

5 Complexity of Behaviour Maxmin and
Mixed Maxmin

The decision problems Behaviour Maxmin and Mixed
Maxmin can be defined similarly to Pure Maxmin, the
only difference being that MAX can use behaviour/mixed
strategies instead of just pure strategies.9

The complexity of Behaviour Maxmin and Mixed
Maxmin is summarised in Table 2. Again, the complexity
is increasingly monotone in both dimensions, and results
written in bold font are new. The only case where the com-
plexity differs between behaviour and mixed strategies is the
case in which both MAX and MIN have MA-II; in this case,
Behaviour Maxmin and Mixed Maxmin are respectively
ΣP

2 - and ΔP
2 -complete.

The membership results follow from those for EFGs,
which are superclasses of CGIIs: the results for P are by
Koller and Megiddo [25, Sec. 3.5], and the others by Zhang
et al. [43, Appx. C].

Therefore, we only have to establish the hardness results
when MAX and/or MIN have MA-II. We first adapt a re-
duction from 3-SAT by Chu and Halpern [11].

Proposition 5.1. Both Behaviour Maxmin and Mixed
Maxmin are NP-hard for Boolean CGIIs in which MAX
has MA-II and MIN has CI.

Proof. For a 3-CNF with 𝑁 clauses, consider the follow-
ing CGII. The universe consists of the clauses, which are
observable by MAX 1 but not by MAX 2, and with the

9In our definition for all these decision problems, MIN only uses pure
strategies, which is without loss of generality. Indeed, MIN is a team
of agents with perfect recall, hence every MIN’s behaviour strategy has
an equivalent mixed strategy [31, Theorem 6.11]. In addition, the best
responses in mixed strategies are no better than the best responses in pure
strategies due to the linearity of expected utility with respect to mixtures
of strategies.



uniform prior. During the game, MAX 1 picks a variable,
then MAX 2 observes this variable and picks a truth value.
They win if and only if the variable picked by MAX 1 is in
the clause picked by Nature, and the truth value picked by
MAX 2 for this variable renders this clause true.

Since there is no agent of MIN in this game, playing
behaviour or mixed strategies is no better than pure ones. It
is also straightforward to verify that MAX can guarantee an
expected payoff of 1 if the 3-CNF is satisfiable; otherwise,
the maxmin value for MAX is at most 1 − 1/𝑁 . □

Now, coNP-hardness for the symmetric case (when MAX
has CI and MIN has MA-II) essentially follows from this
result. For mixed strategies, the minimax theorem ensures
that when switching the roles of MIN and MAX, and negat-
ing the utilities in the game from the proof of Proposi-
tion 5.1, the maxmin value for MAX is at least −(1 − 1/𝑁)
if the 3-CNF is unsatisfiable, and −1 otherwise. The hard-
ness for Behaviour Maxmin follows from the fact that
mixed maxmin and behaviour maxmin have the same value
due to MAX’s perfect recall.

Proposition 5.2. Behaviour Maxmin is ΣP
2 -hard for

CGIIs in which both MAX and MIN have MA-II.

Proof sketch. By a reduction from ∃∀3SAT (for a 3-
DNF formula 𝜑(𝑥, 𝑦), decides whether ∃𝑥∀𝑦 𝜑(𝑥, 𝑦) holds)
which is known to be ΣP

2 -hard [38]. Given such a formula,
we construct a CGII with 3 agents of MAX and 3 agents of
MIN. The worlds consist of one existential (resp. universal)
variable and one hidden bit for each agent of MAX (resp.
of MIN); the common prior is uniform; each agent only ob-
serves their variable and hidden bit. During the game, the
agents of MAX take turns to choose between 0 and 1, then
so do the agents of MIN. The total payoff for MAX is com-
puted as follows: (1) an inconsistency among the agents of
MAX (in the sense of an interrogation game) yields −𝑁 for
MAX, where 𝑁 is a large real number; (2) an inconsistency
among the agents of MIN yields +𝑁 for MAX; (3) if at least
one term in 𝜑(𝑥, 𝑦) is satisfied by the assignment picked by
the agents of MAX and MIN, then MAX receives +1.

By choosing 𝑁 large enough, agents of MAX have an
incentive to perform a perfect coordination, and the same
goes for agents of MIN. In particular, MAX has no incentive
to play non-pure behaviour strategies, which would cause
inconsistency to happen with a non-zero probability. It is
then straightforward to verify that ∃𝑥∀𝑦 𝜑(𝑥, 𝑦) holds if and
only if MAX can guarantee an expected utility of at least
+1/𝑛3, where 𝑛 is the maximum between the number of
existential variables and the number of universal ones. □

Proposition 5.3. Mixed Maxmin is ΔP
2 -hard for CGIIs in

which both MAX and MIN have MA-II.

Proof sketch. By a reduction from Last SAT (for a 3-CNF,
decide whether the lexicographically maximum satisfying

assignment has value 1 for the last variable), which is ΔP
2 -

hard [28]. The construction is very similar to the last proof.
Given a 3-CNF, we write the variables as 𝑥1, . . . , 𝑥𝑛, and
we construct a CGII with 3 agents of MAX and 3 agents
of MIN. The worlds consist of one variable and one hidden
bit for each agent of MAX or MIN; the common prior
is uniform; each agent only observes their variable and
hidden bit. During the game, the agents of MAX take
turns to choose between 0 and 1, then so do the agents of
MIN. The total payoff for MAX is computed as follows:
(1) an inconsistency among the agents of MAX or a clause
violated by their assignment yields −2𝑁 for MAX, where
𝑁 is a large real number; (2) an inconsistency among the
agents of MIN or a clause violated by their assignment
yields +𝑁 for MAX; (3) for the first agent of MAX (resp.
of MIN), if their hidden variable and bit are 𝑥𝑘 and 𝑏, and
they pick 1 ⊕ 𝑏, then MAX receives +2𝑛−𝑘 (resp. −2𝑛−𝑘);
(4) MAX receives a bonus +1 if the variable 𝑥𝑛 is assigned
1 ⊕ 𝑏+1 by the first agent of MAX.

By choosing 𝑁 large enough, both MAX and MIN have
an incentive to perform a perfect coordination (which can
be pure or mixed for MAX) with a satisfying assignment.
Let 𝑥 = (𝑥1, . . . 𝑥𝑛) be the lexicographically maximum sat-
isfying assignment (if there is no such assignment, then
MAX is bound to get a large negative expected utility). If
𝑥𝑛 = 1, then MAX can guarantee an expected utility of
+1/𝑛 by choosing this assignment for their perfect coordi-
nation; the best MIN can do is to choose this assignment.
If 𝑥𝑛 = 0, MAX has an expected utility of at most 0 when
MIN plays this assignment: MAX gets 0 by playing the
same assignment, and possibly less when playing other sat-
isfying (hence lexicographically smaller) assignments with
a non-zero probability. □

6 Conclusion

We have proposed a new formalism for extensive-form
games with incomplete information that we name combi-
natorial games with incomplete information. Compared to
EFGs, CGIIs only have public actions and one chance node
at the beginning of the game, thereby putting better empha-
sis on the aspect of incomplete information/knowledge of
the players.

Apart from the conceptual simplicity, the interests in this
new formalism are also justified by the complexity results.
Indeed, all the upper bounds for CGIIs are provided by
membership results that also hold for EFGs, while all the
lower bounds, proven by hardness results, coincide with the
upper bounds. In particular, for every degree of observabil-
ity, CGIIs have the same complexity as EFGs.

We have also shown how to model binary concurrent
actions to enforce multi-agent coordination in CGIIs. We
leave to future work how to model other types of hidden
actions, in particular non-binary concurrent actions. Fu-



ture work also includes tightening the complexity results to
show that hardness holds even for Boolean CGIIs with a
minimum number of agents and distributed knowledge of
the real world for each team; designing a generic polynomial
transformation from an arbitrary two-team EFG into a CGII;
and extending the study to general-sum multi-team CGIIs
with respect to solution concepts that generalise maxmin
(e.g. strategies to commit to [30]). Algorithmic studies
adapted to CGIIs will also be of interest, with the long-term
goal to implement better AIs for games such as Bridge.
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