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Résumé
Les réseaux temporels simples avec incertitude (STNU)

sont un modèle bien connu basé sur les contraintes qui ex-
prime des plans d’activités liées par des contraintes tem-
porelles, chacune ayant des durées possibles sous la forme
d’intervalles convexes. L’incertitude provient du fait que cer-
taines de ces durées sont "contingentes", c’est-à-dire que
l’agent qui exécute le plan ne peut pas décider de la durée
réelle au moment de l’exécution. Pour vérifier que l’exécu-
tion satisfera toutes les contraintes, il existe trois niveaux
de contrôlabilité, selon que l’agent observe ou non la durée
réelle et à quel moment ; deux d’entre eux, la contrôlabi-
lité forte et dynamique (SC/DC), se sont révélés à la fois
utiles dans la pratique et prouvables en un temps polyno-
mial. La troisième, la contrôlabilité faible (WC), suppose
que les durées incertaines seront fixées par un "oracle" juste
avant le début de l’exécution, et on suppose qu’elle est co-
NP-complète. En outre, les algorithmes de vérification de
la contrôlabilité sont des stratégies de propagation, qui pré-
sentent l’inconvénient habituel, en cas d’échec, de s’avérer
incapables de localiser clairement les contingents qui ex-
pliquent la non-contrôlabilité. Cet article a trois contribu-
tions : (1) il justifie l’utilité de la WC dans les systèmes
multi-agents (SMA) où un autre agent contrôle un contin-
gent, et les agents se mettent d’accord juste avant l’exécution
sur les durées ; il fournit un nouvel algorithme de vérifica-
tion de la WC (2) dont la performance en pratique dépend
de la structure du réseau, et semble être pseudo-polynomiale
dans les réseaux faiblement connectés correspondant à des
cas réalistes, et (3) qui fournit les cycles défaillants dans le
réseau qui expliquent la non-WC : cela rendra donc possible
dans les SMA de réparer les contingents identifiés par des
négociations avec d’autres agents.

Abstract
Simple Temporal Networks with Uncertainty (STNU)

are a well-known constraint-based model expressing plans
of activities related by temporal constraints, each having pos-

sible durations in the form of convex intervals. Uncertainty
comes from some of these durations being contingent, i.e.,
the agent executing the plan cannot decide the actual duration
at execution time. To check that execution will satisfy all the
constraints, three levels of controllability exist, depending
on if and when the agent observes the actual duration; two
of them, the Strong and Dynamic Controllability (SC/DC),
have proven to be both useful in practice and provable in
polynomial time. The third one, the Weak Controllabiilty
(WC) assumes that uncertain durations will be set through
some ’oracle’ just before execution starts, and is conjectured
to be co-NP-complete. Moreover, controllability checking
algorithms are propagation strategies, which have the usual
drawback, in case of failure, to prove unable to clearly locate
the contingents that explain the non-controllability. This
paper has three contributions: (1) it substantiates the use-
fulness of WC in multi-agent systems (MAS) where another
agent controls a contingent, and agents agree just before ex-
ecution on the durations; it provides a new WC-checking
algorithm (2) whose performance in practice depends on the
network structure, and seems to be pseudo-polynomial in
loosely connected ones corresponding to realistic cases, and
(3) which provides the failing cycles in the network that ex-
plain non-WC: that shall hence make it possible in MAS to
repair the identified contingents through negotiations with
other agents.

Keywords: Temporal constraints, Temporal uncertainty,
Multi-agent planning, Graph-based algorithms, Explainable
inconsistency

1 Introduction

Temporal Constraint Satisfaction Problems (TCSP) are
constraint-based problem formulations that allow to re-
present and reason on temporal constraints. They are used



in a lot of domains, such as planning and scheduling (on
which we will focus), supervision of dynamic systems, or
workflow design. They are based on a graphical model,
the reason why they are usually called Temporal Constraint
Networks (TCN)[6] : variables/nodes are time-points for
which one shall assign a timestamp. Constraints/edges ex-
press sets of possible durations relating them. A key issue
is the ability to check the consistency of the whole network.
The simplest class, called the Simple Temporal Network
(STN), arises when they have only binary constraints with
only convex intervals of values (no disjunctions). One of the
main strengths of this restricted, but often sufficient in prac-
tice, model is that consistency checking is made through a
polynomial propagation algorithm (the Floyd-Warhsall re-
duction) and provides a complete minimal network in which
all inconsistent values are removed. This minimal network
can be passed on to some execution manager that can take
any value on the domain of the first activity to schedule,
and repropagate, and so on iteratively.

A well-known extension of STNs that handles uncer-
tainties, called STNU (Simple Temporal Network with Un-
certainty), has been proposed by [13]. An STNU contains
uncertain (contingent) durations between time-points which
means the effective duration is not under the control of the
agent executing the plan, which is useful for addressing
realistic dynamic and stochastic domains.

In STNUs, the notion of temporal consistency has been
redefined in the form of controllability : an STNU is control-
lable if there exists a strategy for executing the schedule
whatever the values taken by the contingent durations. In
[13] the authors introduce three levels of controllability
that express how and when the uncertainties are resolved :
the Weak Controllability (WC) proves a solution exists for
any possible combination of contingent values. Which re-
quires that some ’oracle’ provides those values before the
timing of controllable time-points is decided ; the Dynamic
Controllability (DC) is more demanding as it assumes that
at execution time a strategy can be built based on past ob-
servations only, thus whatever the contingent durations still
to be observed ; last, the Strong Controllability (SC) is even
more demanding as it enforces that there is one unique as-
signment of controllable timepoints values, which defines
a static control strategy that works whatever the contingent
durations will be at execution time. WC has often appeared
to be unrealistic in dynamic applications that assume full
progressive observability at execution time. DC answers
to that and looks more relevant, and has received much
attention in previous works. Comparatively, SC is usually
too demanding unless under partial or non-observability, or
when some strict commitment must be made on the execu-
tion schedule timing for some client.

Previous works prove that SC and DC can be resolved
with specially designed propagation-based algorithms that
run in polynomial time [10, 3, 13]. WC is more complex

because it is supposed to be a co-NP-complete problem,
and only exponential algorithms exist to check WC [5, 13].
This is another reason why WC has not received as much
attention as DC and has been disregarded [2, 13].

Anyway, nowadays, STNUs appear to be useful in even
more new application domains in which WC would actually
be relevant, especially when it comes to multi-agent task
management. This paper aims to address it, discussing more
precisely how and when one could need it. As we will argue
some of those applications definitely need more efficient
algorithms : this paper aims at providing a new algorithm
for checking WC in STNUs that is much more efficient in
practice and even experimentally pseudo-polynomial under
some conditions,i.e., behaves like a polynomial time al-
gorithm. Contrary to the complete propagation algorithms
proposed for SC and DC, our algorithm maintains and rea-
sons only on the input constraints, which form paths in
the networks. As in any graph, such paths join and form
cycles. We prove that it is possible to check the global weak
controllability by locally checking the elementary cycles of
an STNU.

Moreover, the algorithm is also capable of diagnosing
the source of uncontrollability of a non-WC STNU, i.e., to
detect the set of constraints that makes the STNU not weakly
controllable. This explainable issue is a problem recently
addressed in STNU for DC in [9]. This is important for the
executor manager in order to repair the schedule [2, 1, 12].
The paper is organized as follows : Section 2 first recalls the
necessary background on STNU. Section 3 then discusses
the usefulness in practical applications of WC. Then, we
prove in Section 4 how local controllability on cycles is
equivalent to global WC. Next, Section 5 will present how
to locally check WC, and Section 6 will present the new
algorithm for globally checking WC. Some experimental
evaluation will be displayed in Section 7 before concluding
our contribution with some prospects.

2 Background

2.1 STNU

A Simple Temporal Network (STN)[6] is a pair, (𝑉 , 𝐸),
where 𝑉 is a set of time-points 𝑣𝑖 representing event occur-
rence times, and 𝐸 a set of temporal constraints between
these time-points, in the form of convex intervals of pos-
sible durations. A reference time-point 𝑣0 is usually added
to V which is the ’origin of time’, depending on the appli-
cation (might be e.g. the current day at 0 :00). The goal is
to assign values to time-points such that all constraints are
satisfied, which is equivalent to assigning a value to each
constraint in its interval domain.

An STN with Uncertainty (STNU) is an extension in
which one distinguishes a subset of constraints whose va-
lues are parameters that cannot be assigned but will be



observed. Before defining the model and the controllability
levels, we introduce the usual basic notations :

— minimal bounds 𝑙𝑖 𝑗 ∈ R ∪ {−∞},
— maximal bounds 𝑢𝑖 𝑗 ∈ R ∪ {+∞},
— ≺ is the usual qualitative precedence relation between

time-points : 𝑣𝑖 ≺ 𝑣 𝑗 , i.e., 𝑣𝑖 happens before 𝑣 𝑗 . A
numerical constraint in the STNU from 𝑣𝑖 to 𝑣 𝑗 has its
lower bound 𝑙𝑖 𝑗 ≥ 0 iff 𝑣𝑖 ⪯ 𝑣 𝑗 .

Definition 1 (STNU) An STNU is a tuple (𝑉, 𝐸, 𝐶) with :
— V a set of time-points {𝑣0, 𝑣1, . . . , 𝑣𝑛}, partitioned into

controllable (𝑉𝑐) and uncontrollable (𝑉𝑢) ;
— 𝑣0 the reference time-point : ∀𝑖, 𝑣0 ⪯ 𝑣𝑖

— E a set of requirement constraints {𝑒1, . . . , 𝑒 |𝐸 | },
where each 𝑒𝑘 is of the form [𝑙𝑖 𝑗 , 𝑢𝑖 𝑗 ] with, 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 .

— C a set of contingent constraints {𝑐1, . . . , 𝑐 |𝐶 | }, where
each 𝑐𝑘 is of the form [𝑙𝑖 𝑗 , 𝑢𝑖 𝑗 ] with, 𝑣𝑖 ∈ 𝑉𝑐, 𝑣 𝑗 ∈ 𝑉𝑢,
and necessarily 𝑣𝑖 ⪯ 𝑣 𝑗 : 0 ≤ 𝑙𝑖 𝑗 ≤ 𝑢𝑖 𝑗 .

Intuitively, controllable time points (V𝑐) are moments in
time to be decided by the scheduling agent, which is trying
to satisfy all the requirement constraints (E) under any pos-
sible instantiation of the contingent constraints (C). Mo-
reover, it’s semantically impossible to have a contingent
duration between two unordered time-points. Figure 1a is
the graphical representation of an STNU.

In addition, an STN (and hence an STNU too) has an equi-
valent distance graph representation [6, 7]. Each constraint
of the form [𝑙, 𝑢] between 𝑣𝑖 and 𝑣 𝑗 would be represen-

ted as 𝑣𝑖
[𝑙,𝑢]
−−−−→ 𝑣 𝑗 in the STN, or equivalently through two

corresponding edges in its distance graph : 𝑣𝑖
𝑢−→ 𝑣 𝑗 and

𝑣 𝑗

−𝑙−−→ 𝑣𝑖 .

2.2 Three levels of controllability

In a STN, the notion of consistency is applied to define
that there exists a solution that satisfies the constraints. In
a STNU, the consistency has been redefined in three levels
of controllability that we are going to recall before focusing
on the problem of Weak Controllability.

Definition 2 (Schedule) A schedule 𝛿 of an STNU X is an
assignment of the controllable time-points 𝛿 = {𝛿(𝑣) | 𝑣 ∈
𝑉𝑐}

Definition 3 (Situation and Projection) Given an STNU
X, for all k = 1 . . . |𝐶 |, 𝑐𝑘 = [𝐿𝑘 ,𝑈𝑘],Ω =

[𝐿1,𝑈1]
>

. . .
> [𝐿 |𝐶 | ,𝑈 |𝐶 | ] is the domain of all possible

situations of X.
A tuple 𝜔 = ⟨𝜔1 ∈ [𝐿1,𝑈1], . . . , 𝜔𝐶 ∈ [𝐿 |𝐶 | ,𝑈 |𝐶 | ]⟩ ∈ Ω

is called a complete situation of X and X𝜔 the projec-
tion of X, is an STN where X𝜔 = (𝑉, 𝐸 ∪ 𝐶′) with

𝐶′ = {[𝜔𝑘 , 𝜔𝑘]} | 𝑐𝑘 ∈ 𝐶

Last, a schedule 𝛿𝜔 which satisfies all the constraints inX𝜔

is called a solution of X𝜔 .

Intuitively, the projection 𝑋𝜔 is a problem without un-
certainty in which each contingent duration has been fixed
to a given value. Hence 𝑋𝜔 is an STN.

Definition 4 (Weak Controllability (WC)) An STNU X is
weakly controllable iff ∀𝜔 ∈ Ω, ∃𝛿 such that 𝛿 is a solution
of X𝜔 .

This definition implies that the scheduler is clairvoyant,
i.e. there is an ’oracle’ that predicts the future and communi-
cates the durations of the contingents to the scheduler before
execution time. In other words WC requires all projections
to be consistent independently from one another.

The two other controllablity levels impose more requi-
rements, first (DC) removing the clairvoyance assumption
and demanding that each assignment of a controllable time-
point only depends on the past observations and not the
future ones, and even (SC) demanding that the (unique)
schedule is totally independent from any observation [13].

As said before, propagation-based checking algorithms
exist for SC and DC [13][10][3]. But not for WC checking,
which is conjectured to be co-NP-complete ; anyway, consi-
dering only the bounds is enough to verify any level of
controllability in STNU : it is enough to consider projec-
tions on the bounds to be sure that all intermediate projec-
tions will be consistent as well[13]. The original algorithm
to check WC checks the consistency of all 2 |𝐶 | STNs obtai-
ned by replacing the contingents with one of their bounds
(upper or lower), which is an exponential algorithm.

3 Weak Controllability

In this section, we will argue that WC may be more rele-
vant than DC and SC for some applications, while checking
WC has been somehow left apart in the literature so far.
This is mainly because WC assumes that the duration of
the contingent activities is revealed when execution starts.
Somehow, it requires an entity capable of predicting and
sharing these durations with the scheduler agent before the
actual occurrence of such activities.

However, in classical planning and scheduling applica-
tions, uncertainties come from external causes ; they are
somehow ’controlled by Nature’, and can only be observed
at their time of occurrence. Which is why DC/SC are more
relevant in practice. For instance, when one starts cooking
a steak, they do not know how long it will take and will
observe it once the steak is actually well done.

However, in many domains (logistics, transport, ser-
vices), they have a first strategic phase that builds a plan
without assigning all real resources ; a more precise tactical
version will do that later. For instance, in a health service



or in a construction site, one needs a weekly plan for vi-
siting patient rooms, or for the construction tasks, but the
assigned teams (number of people, skills) are not known,
which results in flexible and large enough intervals of pos-
sible durations. The precise assignment is only known each
day for the next day, which allows to get a more precise plan
just before execution, which is exactly the definition of WC.

Moreover, uncontrollable durations also appear in multi-
agent systems, when some event might be owned by another
agent instead of Nature. Still, in such contexts, collaboration
may rely on the timely communication of effective durations
at execution time. But in some application contexts, it might
be the case that the interval of activity’s duration represents
the degree of freedom, and hence the flexibility, that some
agent wishes to keep as long as possible to be more ro-
bust. But at the same time, actual durations must be set
and communicated just before execution to the other agents
that depend on it for better coordination. Thus, some tasks
might be controllable (requirement) for one agent but un-
controllable for another one (contingent). That may arise,
for instance, in collaborating hospital services that share
common resources : they plan in advance their weekly ope-
rations with maximum flexibility but must set and confirm
to others their own schedules each day for the next one. At
this point, all shared events that are not controlled by Na-
ture become requirement constraints at execution time. In a
setting where no events are controlled by Nature, checking
WC instead of DC/SC enables the agents to be more robust
through least-commitment strategies, retaining flexibility as
long as possible and hence computing more optimal solu-
tions for their schedule.

One should notice that even though some approaches
exist to deal with multi-agent STNUs [4], those actually
consider a global plan shared among agents in which contin-
gent constraints are still controlled by Nature. Conside-
ring inter-dependent STNUs, with shared activities that are
controllable by one agent and only observed by others, still
need to be investigated. That is the topic of future research
for which this paper somehow is a cornerstone.

4 From local controllability to global contro-
lability

4.1 Updated STNU graphical model

A starting point for resolving the issue of Weak Control-
lability is to add some features to STNU’s graphical re-
presentation and adapt the model accordingly. Nodes in an
STNU will not only be divided between controllable and
uncontrollable time-points (the ending time-points of some
contingent constraint), but we also need to identify among
them divergent time-points and convergent ones.

Definition 5 (Convergent and Divergent time-points)
In a STNU X = (𝑉, 𝑣0, 𝐸, 𝐶) :

— 𝑣𝑖 ∈ 𝑉 is called a divergent time-point iff ∃ 𝑗 , 𝑘, 𝑖 ≠
𝑗 ≠ 𝑘 with 𝑣𝑖 → 𝑣 𝑗 ∈ 𝐸 ∪ 𝐶 and 𝑣𝑖 → 𝑣𝑘 ∈ 𝐸 ∪ 𝐶 ;

— 𝑣𝑖 ∈ 𝑉 is called a convergent time-point iff ∃ 𝑗 , 𝑘, 𝑖 ≠
𝑗 ≠ 𝑘 with 𝑣 𝑗 → 𝑣𝑖 ∈ 𝐸 ∪ 𝐶 and 𝑣𝑘 → 𝑣𝑖 ∈ 𝐸 ∪ 𝐶 ;

— 𝑉𝑑𝑣 is the set of divergent time-points with 𝑉𝑑𝑣 ⊆ 𝑉 ;
— 𝑉𝑐𝑣 is the set of convergent time-points with 𝑉𝑐𝑣 ⊂ 𝑉 ;

Intuitively, a divergent node has at least two outgoing
edges in the input graph modeling the STNU, and a
convergent one has at least two incoming edges.

Please note that if a contingent link is necessarily a di-
rected edge (implicit precedence), a requirement link may
be a non directed edge : e.g. 𝑣𝑖

[−5,10]
−−−−−−→ 𝑣 𝑗 , imposing some

constraint on the temporal distance between the time-points
but allowing any order between them at execution time.
Hence, 𝑣𝑖 or 𝑣 𝑗 in this example may be considered as a
divergent time-point, depending on the order between them
in the input link defined at the design level (here the link
will be an outgoing edge from 𝑣𝑖). As it will be shown in
the next sub-section, it will only change the begin and end
points of the two paths that form a cycle, but the cycle will
still be the same.

In addition,𝑉𝑑𝑣∩𝑉𝑐𝑣 may not be void, i.e. any 𝑣 ∈ 𝑉 may
be convergent, divergent, convergent and divergent, or nei-
ther convergent nor divergent (we shall call the latter serial
nodes). In fact, these definitions are orthogonal to the dis-
tinction between controllable and contingent time-points,
meaning that a controllable time-point might be convergent
or divergent, etc., and a contingent one alike (since a contin-
gent and a controllable constraint can converge on the same
point, but not two or more contingent : an assumption we
make as it’s obvious such STNU is not controllable).

Of course, by definition, 𝑣0 cannot be a convergent time-
point, but usually, a divergent one, even though the model
does not enforce it, as 𝑣0 is used to define the absolute time
of any time-point 𝑣𝑖 as a constraint between 𝑣0 and 𝑣𝑖 .

One can see that such a characterization is very similar
to what is done in flow networks [8], but there the problem
is to check that the sum of labels (capacities) that converge
on a point equals the sum of the labels that exit that node,
while here we will instead use this distinction to look for
cycles, i.e. identify that two paths diverging from one node
and reunite in a convergent node have compatible overall
durations whatever values the contingent in those paths will
take, which is a local WC condition.

In figure 1(a), we present an STNU as defined in defini-
tion 1 augmented by definition 5. Figure 1(b) exhibits an
alternative way to represent the STNU that will be explained
in the next sections.

4.2 Weak controllability on cycles

First, checking WC of X is straightforward when there is
no convergent time-point. Thus X is a multi-linear graph,
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Figure 1 – An STNU is presented in (a) where time-point A plays
here the role of the reference point 𝑣0, 𝑉𝑑𝑣 = {𝐴,𝐶} (doubly cir-
cled nodes) and𝑉𝑐𝑣 = {𝐷, 𝐵}. The links represented by the dotted
arrows are contingent constraints. Hence, C and B are uncontrol-
lable time points, while A and D are controllable time points. The
proposed STNU is not weakly controllable due to the projection

highlighted in bold on the contingent constraints 𝐴 [10, 15]
𝐶 and

𝐴
[20, 30]

𝐵 that violates the synchronization on B. We show in
(1b the controllable bounds graph of the STNU.

i.e. only divergent simple timelines on which it is always
possible to just wait for the observation of an uncontrol-
lable time-point to then decide the activation of the next
controllable point, which builds up both the projection and
the schedule overtime. In that case, DC and WC are actually
equivalent and are always satisfied. When there is at least
one convergent point (which entails that there is at least one
divergent point), that means there are paths that diverge at
some point and merge at another point.

Definition 6 (Path) A path 𝜌 in X is a sequence of time-
points 𝑣1, . . . , 𝑣𝑝 such that ∀𝑖 = 1 . . . 𝑝 − 1, 𝑣𝑖 → 𝑣𝑖+1 ∈
𝐸 ∪ 𝐶 or 𝑣𝑖+1 → 𝑣𝑖 ∈ 𝐸 ∪ 𝐶, 𝑣1 ∈ 𝑉𝑑𝑣 and 𝑣𝑝 ∈ 𝑉𝑐𝑣 .

One can see that in that definition, we allow a path to
follow edges in the graph in any direction, thus ensuring
that all possible cycles in the STNU will not be forgotten.
For example, in Figure 1(a), considering divergent node C
and convergent node D, there is obviously a path C-B-D,
but C-A-B-D should also be considered, which is equivalent
to stating that there is a path in the corresponding distance
graph. Somehow, Figure 1(b), if one disregard, for now, the
labels, can be viewed as such a distance graph : the sequence
of directed links C-A-B-D is apparent.

Anyway, it is easy to see that any cycle of initial
constraints in the input STNU can be defined as a pair
of distinct paths as defined above with the same starting
𝑣1 ∈ 𝑉𝑑𝑣 and ending 𝑣𝑝 ∈ 𝑉𝑐𝑣 time-points. It is a pecu-
liar way of defining those cycles that will be useful for our
algorithm.

Definition 7 (WC Divergent Cycle) A divergent cycle M
is a pair (𝜌1, 𝜌2) such that 𝜌1 and 𝜌2 are two paths starting

at the same divergent time point 𝑣𝑑 ∈ 𝑉𝑑𝑣 and ending at the
same converging time point 𝑣𝑐 ∈ 𝑉𝑐𝑣 , where 𝑣𝑑 , 𝑣𝑐 are the
only common time points in 𝜌1, 𝜌2, i.e. ∀𝑣𝑖 ∈ 𝜌1, 𝑣𝑐 ≠ 𝑣𝑖 ≠

𝑣𝑑 : 𝑣𝑖 ∉ 𝜌2.
A cycleM is said to be weakly controllable if the sub-STNU
restricted to the set of time-points and constraints involved
in both paths is WC.

For example, Figure 3b shows a cycle with a first path
represented by C-D and a second one by C-B-D.

Then an STNU is WC if and only if all divergent cycles
are WC. We will present this result in two steps, first defining
a local property that might be checked for a divergent node,
and then generalizing to all divergent nodes ; which will
mainly be useful for better explaining our algorithm.

Definition 8 (Local divergent-WC) Let 𝜇(𝑣𝑑) =

{M1, . . . ,M𝑛} the set of all cycles starting from
𝑣𝑑 ∈ 𝑉𝑑𝑣 , converging on a set of convergent nodes of 𝑉𝑐𝑣

that are necessarily ordered (topological ordering) after
𝑣𝑑 in the STNU X. We say that X is locally divergent-WC
on 𝑣𝑑 iff ∀M𝑖 ∈ 𝜇(𝑣𝑑), M𝑖 is weakly controllable

For example, Figure 3a shows the cycles starting from
the divergent time-point A.

The local divergent-WC does not imply WC, as the cor-
responding sub-STNU might contain other divergent nodes.

Theorem 1 (Global controllability) X is Weakly control-
lable (WC) iff ∀𝑣𝑑 ∈ 𝑉𝑑𝑣 , X is locally divergent-WC on 𝑣𝑑

Theorem 1 implies that checking the local divergent-WC
property of all the divergent nodes of an STNU is enough
to verify the WC.

Proof : The forward implication is straightforward to prove :
if there is a divergent node for which at least one divergent
cycle, which is a sub-STNU, is not WC, that means there is
at least one projection for which there is no consistent local
schedule, then the global STNU will not be WC.

For the reverse implication, suppose the global STNU
is not WC. Then there is at least one projection for which
the corresponding STN is inconsistent ; that is equivalent
to having a negative cycle somewhere in that STN; and
that negative cycle necessarily relates time-points that form
a divergent cycle in the STNU, which in turn is not WC
following Definition 7 [13].

5 Local Weak Controllability

In this section, we show how to check the WC of a cycle by
exploiting the convexity of the problem : as proved in [13],
considering the lower and upper bounds of the contingents
is enough to check WC for STNU.



Definition 9 (Controllable Bounds) Given an STNU X =

(𝑉, 𝑣0, 𝐸, 𝐶), and 𝑡𝑖 𝑗 ∈ 𝐸 ∪ 𝐶. The controllable bounds of
𝑡𝑖 𝑗 , denoted Π𝑐𝑡𝑙

𝑖 𝑗
, is the tuple of discrete values such that :

Π𝑐𝑡𝑙
𝑖 𝑗 = ⟨𝑚𝑖𝑛𝑐𝑡𝑙𝑖 𝑗 , 𝑚𝑎𝑥𝑐𝑡𝑙𝑖 𝑗 ⟩

where, 𝑚𝑖𝑛𝑐𝑡𝑙
𝑖 𝑗

and 𝑚𝑎𝑥𝑐𝑡𝑙
𝑖 𝑗

respectively represent the mini-
mal and maximal duration that can be guaranteed for 𝑡𝑖 𝑗 .

It is easy to see that any requirement constraint 𝑒𝑖 =

[𝑙𝑖 𝑗 , 𝑢𝑖 𝑗 ], has a minimal and maximal duration that can
be guaranteed with 𝑚𝑖𝑛𝑐𝑡𝑙

𝑖 𝑗
= 𝑙𝑖 𝑗 and 𝑚𝑎𝑥𝑐𝑡𝑙

𝑖 𝑗
= 𝑢𝑖 𝑗 .

A contingent constraint is different due to its uncontrol-
lable duration. Still, some guarantee can be extracted on
its execution. Indeed, the duration of any 𝑐𝑖 ∈ 𝐶 is guaran-
teed, for the minimum, to be at most equal to𝑈𝑖 𝑗 and, for the
maximum, at least equal to 𝑙𝑖 𝑗 . Thus, we have : 𝑚𝑖𝑛𝑐𝑡𝑙

𝑖 𝑗
= 𝑢𝑖 𝑗

and 𝑚𝑎𝑥𝑐𝑡𝑙
𝑖 𝑗

= 𝑙𝑖 𝑗 . Intuitively, 𝑚𝑖𝑛𝑐𝑡𝑙
𝑖 𝑗

and 𝑚𝑎𝑥𝑐𝑡𝑙
𝑖 𝑗

represent
the two worst-case scenarios of a contingent duration. In
the following, we generalize Π𝑐𝑡𝑙

𝑖 𝑗
as follows :

Π𝑐𝑡𝑙
𝑖 𝑗 =

{
⟨𝑢𝑖 𝑗 , 𝑙𝑖 𝑗⟩ iff 𝑡𝑖 𝑗 ∈ 𝐶

⟨𝑙𝑖 𝑗 , 𝑢𝑖 𝑗⟩ iff 𝑡𝑖 𝑗 ∈ 𝐸
(1)

Then, from Equation 1, it is actually possible to re-
present an STNU X in terms of its controllable bounds
graph denoted Π𝑐𝑡𝑙

X , which is shown in Figure 1 (b).
This graph considers each original constraint and its in-
verse. A requirement constraint 𝑒𝑖 = [𝑙𝑖 𝑗 , 𝑢𝑖 𝑗 ], equivalently
(𝑣 𝑗 −𝑣𝑖) ≥ 𝑙𝑖 𝑗 and (𝑣 𝑗 −𝑣𝑖) ≤ 𝑢𝑖 𝑗 , has an inverse constraint
𝑒′
𝑖

: (𝑣𝑖 − 𝑣 𝑗 ) ≤ −𝑙𝑖 𝑗 and (𝑣𝑖 − 𝑣 𝑗 ) ≥ −𝑢𝑖 𝑗 equivalently re-
presented as 𝑒′

𝑖
= [−𝑢𝑖 𝑗 ,−𝑙𝑖 𝑗 ]. The same transformation is

applied to contingent constraints. Please note that we intro-
duce this new graph representation instead of reusing the
well-known distance graph of an STNU as it’s simpler. We
also believe this new representation could pave the way for
more efficient algorithms for DC.

From this transformation, it’s possible to compute the
controllable bounds of a path 𝜌 composed of constraints in
𝐸 ∪ 𝐶 by controllable bounds propagation from 𝑣1 to 𝑣𝑝 .

Definition 10 (Controllable Path Bounds)
Let 𝜌 be a path in Π𝑐𝑡𝑙

X , with 𝑣1, . . . , 𝑣𝑝 the sequence of
time-points of 𝜌. The controllable path bounds denoted
Π𝑐𝑡𝑙

𝜌 is defined as follows :

Π𝑐𝑡𝑙
𝜌 = ⟨

∑︁
𝑚𝑖𝑛𝑐𝑡𝑙𝑖 𝑗 ,

∑︁
𝑚𝑎𝑥𝑐𝑡𝑙𝑖 𝑗 ⟩

From this point, it’s possible to check the WC controllability
of a cycle M = (𝜌1, 𝜌2) through the controllable paths
bounds Π𝑐𝑡𝑙

𝜌1 and Π𝑐𝑡𝑙
𝜌2 . Indeed, we need to guarantee that

the minimum controllable duration of 𝜌1 is lesser or equal
to the maximum controllable duration of 𝜌2 and vice-versa.
Intuitively, if the condition is not satisfied, then there exists
a projection of M such that 𝜌1 and 𝜌2 cannot synchronize

on 𝑣𝑝 as Π𝑐𝑡
𝜌 represent the worst-case scenarios of 𝜌. the

worst-case scenarios for synchronizing two paths are those
where, for one path, its contingents take the minimal bound
𝑙𝑖 𝑗 and the maximal bounds 𝑢𝑖 𝑗 for the second path.

Theorem 2 (Cycle WC property)
Given a cycle M = (𝜌1, 𝜌2) and the controllable

paths bounds Π𝑐𝑡𝑙
𝜌1 = ⟨𝑚𝑖𝑛𝑐𝑡𝑙𝜌1 , 𝑚𝑎𝑥𝑐𝑡𝑙𝜌1 ⟩ and Π𝑐𝑡𝑙

𝜌2 =

⟨𝑚𝑖𝑛𝑐𝑡𝑙𝜌2 , 𝑚𝑎𝑥𝑐𝑡𝑙𝜌2 ⟩. M is weakly controllable iff :

(𝑚𝑖𝑛𝑐𝑡𝑙𝜌1 ≤ 𝑚𝑎𝑥𝑐𝑡𝑙𝜌2 ) ∧ (𝑚𝑖𝑛𝑐𝑡𝑙𝜌2 ≤ 𝑚𝑎𝑥𝑐𝑡𝑙𝜌1 ) (2)

Proof : The forward implication is straightforward to prove :
if M is WC, then whatever the bounds of the contin-
gents in M, there always exists a schedule that satisfies
the constraints of M. Let’s suppose Equation 2 is false.
It means there exists a projection of 𝜌1 and 𝜌2 such that
the synchronization on 𝑣𝑝 is impossible and forms a nega-
tive cycle. Thus, such a projection is inconsistent, and M
is not WC. This is impossible as all projections of M are
consistent.

For the reverse implication, let’s suppose M is not
WC, but Equation 2 is satisfied. Then, it means that
the projections of the two worst-case scenarios of M
are consistent as there exists at least one schedule that
guarantees the synchronization on 𝑣𝑝 . Thus, any projection
satisfies the synchronization on 𝑣𝑝 . This is not possible
as M is not WC, which implies the sub-STNU M has a
negative cycle [13].

For simplicity, we denote 𝑀𝑐𝑡𝑙 a worst-case scenario
of M. A running example would be considering the net-
work on the left of Figure ?? as an STNU. The control-
lable bounds are : {30, 20} for 𝐴

[20, 30]
𝐵, {15, 10} for

𝐴
[10, 15]

𝐶, and {10, 20} for 𝐶
[10,20]
−−−−−→ 𝐵. Only one cycle

exists that is formed by the two paths (𝜌1, 𝜌2) from A to
B, where Π𝑐𝑡𝑙

𝜌1 = {30, 20} and Π𝑐𝑡𝑙
𝜌2 = {25, 30}, which does

not satisfy Equation 2 as 𝑚𝑖𝑛𝑐𝑡𝑙𝜌2 > 𝑚𝑎𝑥𝑐𝑡𝑙𝜌1 .

6 The WC-Checking algorithm

6.1 Description of the algorithm

In this section, we present the new WC-checking algo-
rithm for STNU by finding and checking its cycles. The al-
gorithm comprises two parts : the first one finds the cycles
of a divergent time-point, and the second one checks those
cycles. In the following, we formalize the basic structures
for the WC checking algorithm given an STNU X :

— a projection path p, is a path ⟨𝛼𝑝 , 𝐶𝑝 , 𝑉𝑝⟩ in Π𝑐𝑡𝑙
X

from 𝑣𝑑 to 𝑣𝑚, where 𝛼 is the minimal or maximal
controllable bound of Π𝑐𝑡𝑙

𝑝 obtained by propagation.
𝐶𝜌 is the set of contingent constraints of p (𝐶𝑝 ⊆ 𝐶),



and 𝑉𝑝 the set of time-points of p (𝑉𝑝 ⊆ 𝑉). Please
note that p is the definition of a path from an algorithm
point of view, while in reality, p and 𝜌 are equivalent.

— 𝑃(𝑣𝑑) is a set of projection paths 𝑃(𝑣𝑑) =

{𝑝𝑖 , . . . , 𝑝𝑚} that start at a divergent time-point 𝑣𝑑
and still have to converge on a common 𝑣𝑐.

— the minimal divergent cycles 𝐷𝑚𝑖𝑛 (𝑣𝑑) is a mapping
of convergent time points 𝑣𝑐 to a set of projection
paths (𝑃𝑚𝑖𝑛

𝑣𝑐
) that converge from 𝑣𝑑 to 𝑣𝑐 such that

∀𝑝 ∈ 𝑃𝑣𝑐 , 𝛼𝑝 = 𝑚𝑖𝑛𝑐𝑡𝑙𝑝 .
— the maximal divergent cycles 𝐷𝑚𝑎𝑥 (𝑣𝑑) is a mapping

of convergent time points 𝑣𝑐 to a set of projection
paths (𝑃𝑚𝑎𝑥

𝑣𝑐
) that converge to 𝑣𝑐 from 𝑣𝑑 such that

∀𝑝 ∈ 𝑃𝑣𝑐 , 𝛼𝑝 = 𝑚𝑎𝑥𝑐𝑡𝑙𝑝 .

We introduce in Algorithm 1 the findDivergentCycles algo-
rithm in charge of finding the cycles of a divergent time-
point 𝑣𝑑 . To avoid going through all possible paths in the
controllable bounds graph Π𝑐𝑡𝑙

X , we prune the number of
paths in two ways :
— We first add the notion of rank, which was not formally

defined in our model as it was not needed but is com-
mon in qualitative temporal networks : it is possible to
define a partial order of all time-points with regard to
the precedence relation ; 𝑟𝑎𝑛𝑘 (𝑣0) = 0, then for all 𝑣𝑖
such that 𝑣0 ⪯ 𝑣𝑖 ∈ 𝐸 ∪𝐶 and there is no 𝑣 𝑗 such that
𝑣0 ⪯ 𝑣 𝑗 ∈ 𝐸 ∪ 𝐶 and 𝑣 𝑗 ⪯ 𝑣𝑖 ∈ 𝐸 ∪ 𝐶, 𝑟𝑎𝑛𝑘 (𝑣𝑖) = 1,
and so on and so forth.

— Using that rank, a forward search is then applied by or-
dering the time-points through a topological ordering
algorithm from 𝑣0 (rank 0). This enables us to avoid
any time-point 𝑣𝑖 with a lower rank than the current
divergent time-point 𝑣𝑑 .

— A distinction between the minimal and maximal
controllable bounds of a path. We apply two forward
searches : one that computes the paths with only the
maximal controllable bound and one with the minimal
controllable bound. This allows us to prune the paths
that converge to any convergent time-point to keep
only stricter ones. For example, it is easy to see that
for two paths 𝑝𝑖 and 𝑝 𝑗 such that 𝐶𝑝𝑖 = 𝐶𝑝 𝑗

= {∅}
(only requirement constraints) 𝑝𝑖 is stricter than 𝑝 𝑗

if 𝑚𝑖𝑛𝑐𝑡𝑙𝑝𝑖
> 𝑚𝑖𝑛𝑐𝑡𝑙𝑝 𝑗

(respectively, 𝑚𝑎𝑥𝑐𝑡𝑙𝑝𝑖
< 𝑚𝑎𝑥𝑐𝑡𝑙𝑝 𝑗

).
Hence, it’s useless to consider further 𝑝 𝑗 as 𝑝𝑖 is a stric-
ter path, and only 𝑝𝑖 is kept in 𝐷𝑚𝑖𝑛 (𝑣𝑑) or 𝐷𝑚𝑎𝑥 (𝑣𝑑)
depending on the computed controllable bound. This
also holds for a path 𝑝 𝑗 such that 𝐶𝑝 𝑗

≠ {∅} (with
contingent constraints). However, when 𝐶𝑝𝑖 and 𝐶𝑝 𝑗

are not empty, it’s impossible to apply these rules as
it might result in removing an inconsistent cycle in
the graph. Suppose we have the minimal controllable
bounds of 𝑝𝑖 and 𝑝 𝑗 and the maximal controllable
bounds of a path 𝑝𝑘 such that the tuple (𝑝 𝑗 , 𝑝𝑘) is the

only one to form a cycle 𝑀𝑐𝑡𝑙 . Then, if 𝜌𝑖 is stricter
than 𝑝 𝑗 and 𝑝 𝑗 is not kept, 𝑀𝑐𝑡𝑙 will never be checked
likewise for the WC of X. Therefore, both 𝑝𝑖 and 𝑝 𝑗

must be kept in 𝐷𝑚𝑖𝑛 (𝑣𝑑). This is actually the reason
why full reduction of intervals through the intersection
of different edges is not possible, and hence, a polyno-
mial time algorithm cannot be found, unlike DC and
SC.

From lines 1 to 3, we initialize the maps 𝐷𝑚𝑎𝑥 (𝑣𝑑) and
𝐷𝑚𝑖𝑛 (𝑣𝑑), and the set of paths P. Then, the core of the
algorithm (lines 5-16) propagates the paths in P to find
and keep all stricter paths of 𝑣𝑑 in 𝐷𝑚𝑎𝑥 (𝑣𝑑) until P =
{∅}. In fact, in line 14, we also update P(𝑣𝑑) and 𝑃𝑣 𝑗 by
removing the paths that are not stricter anymore. A second
forward search is done for 𝐷𝑚𝑖𝑛 (𝑣𝑑) where P(𝑣𝑑) is reset.
Once the forward searches are over, the maps 𝐷𝑚𝑎𝑥 (𝑣𝑑)
and 𝐷𝑚𝑖𝑛 (𝑣𝑑) contain all the restrictive paths from 𝑣𝑑 to a
convergent time-point 𝑣𝑐. Then, we execute the checkCycles
algorithm (see Algorithm 2) in charge of checking the WC
of the cycles of 𝑣𝑑 . This algorithm is trivial as it simply
searches and checks for each 𝑣𝑐 in 𝐷𝑚𝑎𝑥 (𝑣𝑑) and 𝐷𝑚𝑖𝑛 (𝑣𝑑)
all the pairs of paths (𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥) that converge on 𝑣𝑐 and
form a cycle M𝑐𝑡𝑙 where 𝑉𝑝𝑚𝑖𝑛

∩𝑉𝑝𝑚𝑎𝑥
= {𝑣𝑑 , 𝑣𝑐}.

Algorithm 1: findDivergentCycles algorithm
Input: 𝑣𝑑 :(time-point), Π𝑐𝑡𝑙

X : (graph), rank : map
Output: Boolean

1 𝐷𝑚𝑖𝑛 (𝑣𝑑) = {}
2 𝐷𝑚𝑎𝑥 (𝑣𝑑) = {}
3 𝑃(𝑣𝑑) = [⟨0, [], [𝑣𝑑]⟩]
4 A first forward search for 𝐷𝑚𝑎𝑥

5 while P not empty do
6 p = 𝑃(𝑣𝑑)[0] p is removed in 𝑃(𝑣𝑑)
7 for each child 𝑣 𝑗 of 𝑣𝑚 ∈ 𝑉𝑝 with rank(𝑣 𝑗 ) ≥

rank(𝑣𝑑) and 𝑣 𝑗 ∉ 𝑉𝑝 do
8 p = propagateMaxPath(Π𝑐𝑡𝑙

X , p, 𝑚𝑎𝑥𝑐𝑡𝑙
𝑚 𝑗

)
9 if 𝑣 𝑗 is a convergent time point (𝑣 𝑗 ∈ 𝑉𝑐)

then
10 if 𝑣 𝑗 not in 𝐷𝑚𝑎𝑥 (𝑣𝑑) then
11 add 𝑣 𝑗 → [𝑝] in 𝐷𝑚𝑎𝑥 (𝑣𝑑)
12 else
13 if p is a restrictive path in 𝑃𝑣 𝑗 then
14 add p to 𝑃𝑣 𝑗 and to 𝑃(𝑣𝑑)

15 else
16 add p to P

17 A second forward search for 𝐷𝑚𝑖𝑛 (𝑣𝑑)
18 return checkCycles(𝐷𝑚𝑎𝑥 (𝑣𝑑), 𝐷𝑚𝑖𝑛 (𝑣𝑑))

Finally, Algorithm 3 presents the WC-checking algorithm
that, for a given STNU X, computes its controllable bounds
graph Π𝑐𝑡𝑙

X (line 1), determines the topological ordering of



Algorithm 2: checkCycles algorithm
Input: 𝐷𝑚𝑎𝑥 (𝑣𝑑), 𝐷𝑚𝑖𝑛 (𝑣𝑑)
Output: Boolean

1 for each 𝑣𝑐 → 𝑃𝑚𝑖𝑛
𝑣𝑐

in 𝐷𝑚𝑖𝑛 (𝑣𝑑) do
2 for each 𝑝𝑚𝑖𝑛 in 𝑃𝑚𝑖𝑛

𝑣𝑐
do

3 for each 𝑝𝑚𝑎𝑥 in 𝑃𝑚𝑎𝑥
𝑣𝑐

in 𝐷𝑚𝑎𝑥 (𝑣𝑑) do
4 if (𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥) is of the form 𝑀𝑐𝑡𝑙 then
5 if 𝛼𝑝𝑚𝑖𝑛

> 𝛼𝑝𝑚𝑎𝑥
then

6 return False Or the cycle

7 return True

the time-points (line 2), and find and check the cycles of each
divergent time-point in 𝑉𝑑 . We inform the readers that the
algorithm does not need to check the pseudo-controllability
of Morris [11] as long as the constraint bounds 𝑙𝑖 𝑗 , 𝑢𝑖 𝑗 are
as follows : 𝑙𝑖 𝑗 ≠ −∞ and 𝑢𝑖 𝑗 ≠ +∞.

We show, in a simplified manner, the execution of our
WC-Checking algorithm in Figure 3. The order from the
ranking is 𝐴 → 𝐶 → 𝐵 → 𝐷 and is used in the forward
searches for finding and checking the cycles from A and C.
We show in Figure 2 a running example of our algorithm
with the divergent time-point A. Please note that for the
sake of this paper, we simplified the example.

Algorithm 3: WC-Checking algorithm
Input: X : STNU(V,𝑣0, 𝑉𝑐,𝑉𝑑 ,E,C)
Output: Boolean

1 Π𝑐𝑡𝑙
X = getDistanceGraph(X)

2 rank = orderFromRank(X)
3 for each 𝑣𝑑 in 𝑉𝑑 do
4 if findDivergentCycles(𝑣𝑑 , Π𝑐𝑡𝑙

X , rank ) ==
False then

5 return False Or non-WC cycles of 𝑣𝑑

6 return True Or all non-WC cycles

6.2 Features and Complexity

The previous section presented the new WC-checking al-
gorithm for STNU that checks WC by checking the internal
cycles of an STNU. The particularity of this approach ea-
sily allows the algorithm to return the set of negative cycles
of a non-weakly controllable STNU (see Algorithms 2, 3).
This feature is important for explainability, as explained
in Section 1. Moreover, the divergent time-points are in-
dependent, which makes parallelization over the divergent
time-points possible. In addition, the pseudo-controllability
step is not required for constraint bounds with finite values
(no constraints with a +∞ or −∞ for bounds). Thus, the
algorithm can be executed incrementally by checking only

divergent time points of the same rank or lesser (topologi-
cal ordering) than the starting time point of the newly ad-
ded constraint is enough due to divergent time-points being
independent. However, it’s not optimal as it might check
cycles that are not linked to the newly added constraint. The
drawback of the algorithm is that the minimal network of
weakly controllable STNUs is not computed.

The temporal complexity of the algorithm depends on
the number of cycles to check, which is related to multiple
parameters such as the number of contingents, the number
of divergent time-points, and the number of successors per
divergent time-point. For a complete graph, the algorithm
is exponential, and its complexity is not better than the ori-
ginal algorithm (2 |𝐶 | ). However, our interest lies in realistic
graphs where the density of the graph is low. Thus, in the
next section, we will compare our algorithm (new_WC)
with the original WC-checking algorithm (old_WC) (see
Section 2) by restricting the parameters. We will also com-
pare it with the Floyd-Warshall algorithm (APSP) to com-
pare the behavior of our algorithm to see if a polynomial
behavior is possible when parameters are restricted enough.
Please note that the APSP cannot check the WC of STNU.

7 Experiments

In order to empirically test the effectiveness of the pro-
posed algorithm, we consider the time from the start of the
algorithm execution until it has finished all computation (not
simply after finding an STNU to be weakly controllable or
not). The benchmark comes from a random generator we
implemented that can randomly generate sparse STNUs. It
creates an STNU in the form of a complete directed acy-
clic graph (DAG), from which we randomly and remove a
number of edges depending on parameters : the number of
time points 𝑛, the rate of divergent time points 𝑟𝑑 and the
number of successors 𝑛𝑐, and the rate of contingency 𝑟𝑐.

All the experiments have been performed on a machine
equipped with an Intel Core processor : 11th Gen Intel(R)
Core(TM) i7-11850H @ 2.50GHz 2.50 GHz. We used a ti-
me/memory limit of 10 minutes/4GB and sequential, single-
core computation for the sake of the experiments.

We experiment under different settings : n =
{20, 50, 100, 200, 500, 1000}, 𝑟𝑑 = {0.1, 0.2, 0.3} meaning
10 to 30% of divergent time-points, 𝑟𝑐 = {0.2, 0.3}, and
𝑛𝑐 = 3. For each combination of parameters, we generate 20
STNUs and compute the average execution time. We show
in Figure 4a that, in general, our algorithm clearly outper-
forms the old-WC algorithm and is slightly worse than the
APSP algorithm up to 20% of contingent constraints. This
shows that the parameters were bounded enough to have a
polynomial behavior. However, beyond this threshold, our
algorithm starts to show its limit. This shows the sensitivity
of our algorithm to the parameters (see Figure 4b).
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𝐷𝑚𝑎𝑥 = {𝐶 : ⟨10, 𝐴𝐶⟩, B : [⟨20, 𝐴𝐵⟩, ⟨30, 𝐴𝐶𝐵⟩], D : ⟨25, 𝐴𝐶𝐷⟩}
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Figure 2 – This Figure shows, in a simplified manner, a running example of Algorithm 1 with divergent time-point A by showing only
the value and the time-points of a path p. In addition, we highlight the edges taken at each step in the forward search (that respect the
conditions in line 7 of Algorithm 1). After step 3, 𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥 contain all the restrictive paths (only those that need to be kept).
Then, with Algorithm 2, we find the couples of paths that form a cycle and check if they are WC. It is easy to see that the paths that
form the cycles for A (see Figure 3a) are present in 𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥 (we highlight the one that is not WC).

8 Conclusion

This paper introduced a novel approach for checking the
WC of an STNU by checking the consistency of its elemen-
tary cycles. Interesting features of our algorithm to consider
further are as follows : it can identify the constraints causing
the uncontrollability, and it can be executed in an incremen-
tal way (not optimal) and in a parallelized way. However,
it is not capable of computing the minimal network of an
STNU. Moreover, we exhibited that the algorithm’s com-
plexity depends on the sparsity of the STNU, which makes it
exponential in the worst cases. However, experiments show
that in loosely connected STNU, the algorithm tends to be-

have in a polynomial-like way. Finally, the paper argues the
relevance of the problem of WC in a multi-agent setting,
where uncontrollable events are not controlled by nature but
by other agents in the system. Further work will tackle the
problem of repairing negative cycles by negotiating the du-
ration of the uncontrollable events, whose duration depends
on the other agents’ decisions.
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Figure 3 – The figure represents, in a simplified way, the steps of
the algorithm for the example of Figure 1. We show in Figure 3a
the cycles of the divergent time-point A that are found and checked
by the algorithm. The same is done for the divergent time-point C
in Figure 3b. The STNU in Figure 1 is not weakly controllable as
the cycle ABC is not weakly controllable due to equation (15 +
10) ≤ 20, highlighted in bold, being false.

(a)

(b)

Figure 4 – Experimentation with 20% (a), and 30% (b) of contin-
gent constraints
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