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Résumé

On cherche à synthétiser des modèles interprétables re-
connaissant le comportement d’un agent parmi d’autres, et
ce sur tout un domaine de planification, exprimé en PDDL.
Nous proposons d’apprendre des formules logiques, à partir
d’un ensemble d’exemples de taille réduite, qui montrent
la solution apportée par l’agent à un ensemble de petites
instances. Ces formules sont exprimées dans une variante
de la Logique Temporelle du Premier Ordre (FTL) adaptée
au formalisme de la planification automatique. De telles
formules sont lisibles par un humain, et peuvent être vues
comme des explications (partielles) de la politique mise en
œuvre par un agent. Notre méthode consiste à apprendre de
tels classifieurs de comportements au travers d’une compila-
tion vers MaxSAT topologiquement guidée qui nous permet
d’apprendre une grande variété de formules. Une étude ex-
périmentale montre que notre implémentation peut appren-
dre des formules intéressantes en temps raisonnable.

Abstract

We consider the problem of synthesizing interpretable
models that recognize the behaviour of an agent out of many
others, on a whole set of planning problems expressed in
PDDL. Our approach consists in learning logical formulas,
from a set of small examples that show how an agent solved
small planning instances. These formulas are expressed in a
version of First-Order Temporal Logic (FTL) tailored to our
planning formalism. Such formulas are human-readable, and
serve as (partial) explanations of an agent’s policy. We pro-
pose to learn such behaviour classifiers through a topology-
guided compilation to MaxSAT, which allows us to generate
a wide range of different formulas. Experiments show that
interesting formulas can be learned in reasonable time.

1 Introduction

One of the main strengths of PDDL planning models is that
they are succinct and human-readable, but can nonethe-
less express general, complex problems, whose state search
spaces are exponential in the size of the encoding – as can

be the solutions. As a consequence, given a set of examples
of the behaviour of an agent (called traces), understanding
and recognizing this behaviour can be tedious.

In order to summarize the behaviour of a planning agent
in a concise, interpretable way, we propose to learn proper-
ties that are specific to the solutions proposed by this agent.
Such properties, expressed in a temporal logic tailored to
fit PDDL planning models, are not only human-readable,
but are also general, and can be evaluated against different
instances of the same planning problem. This allows them
to recognize the behaviour of an agent on instances that
are substantially different from the ones used in the set of
examples.

More specifically, the problemwe tackle is the onewhere,
given a set of positive example traces (the ones of the agent
we seek to recognize) and negative examples traces (the
ones of other agents), we wish to learn a model that can dis-
criminate as well as possible between positive and negative
traces. A wide variety of techniques and models of differ-
ent natures have been proposed in the literature. Among
these, the learning of finite-state automata (DFA) is a well-
studied problem [1, 20, 21], but DFAs can grow quickly
(thus becoming harder to interpret) and do not generalize
to instances not in the example set. More recently, neu-
ral network-based architectures such as LSTMs [22] have
shown very promising results, but lack interpretability, and
the rationale for their decision is rarely clear.

In the past decade, significant efforts have been made
towards learning logical formulas expressed in (a form of)
temporal logic. Such works [18, 19, 8, 15, 3, 4] often
leverage symbolic methods to learn Linear Temporal Logic
(LTL) formulas [17] that fit the example traces, and thus
share some similarities with our work. Some other authors
propose other techniques, such as Latent Dirichlet Alloca-
tion [12], which stems from the field of natural language
processing.

However, in all of these cases, the knowledge extracted
from the sets of examples has the major drawback of not
generalizing well to unknown instances. This is due to the



choice of the language used to express these properties.
For instance, since LTL formulas are built over a set of
propositional variables, they do not generalize to models
that do not share the same variables.

To address this issue, we propose to learn properties in
a version of First-Order Temporal Logic (FTL). When tai-
lored to the PDDL planning formalism, FTL can express
a wide range of properties that generalize from one plan-
ning instance to the other, given that they model similar
problems. This was shown in [2], who proposed to express
search control knowledge in a language similar to ours,
albeit with the aim of guiding the search of a planner de-
signed to use such knowledge. In [4], the authors proposed
to synthesize such control knowledge automatically, and
thus address the problem of learning properties expressed
in a fragment of FTL.

In this paper, we show that it is possible to learn richer
and more expressive properties, using the whole range of
FTL operators and modalities. The properties we wish to
learn should describe the behaviour of a given planning
agent, without being true for the behaviour of other agents.
We show that learning such formulas is computationally
intractable, as the associated decision problem is NP-hard.
This is why the core of our approach consists in encoding
the learning problem into a MaxSAT instance, which has
the added benefit of showing resilience to any potential
noise in the set of training examples. To make the search
more efficient, we fix the general topology of the target
formula before the encoding. In addition to alleviating the
load on the MaxSAT solver and rendering the algorithm
more parallelizable, this also increases the diversity in the
formulas learned by our algorithm, thus providing varied
descriptions of the behaviour of the agent of interest.

Our article is organised as follows: Section 2 introduces
the planning formalism as well as the FTL language. Sec-
tion 3 formally introduces the learning problem we tackle
in this paper, and shows that the associated decision prob-
lem is intractable. Sections 4 and 5 present some technical
choices that we made to solve our problem in reasonable
time in practice. In Section 6, we describe our reduction of
the problem to MaxSAT, and in Section 7, we present our
experimental results, as well as a few examples of formulas
that are within reach of our implementation.

2 Background

2.1 Planning with PDDL

This section introduces the model that we use to describe
planning tasks. Our definition of a PDDL planning task
differs from [9], for instance, as we require the organization
of the objects of our instances into types. The model we
use resembles the one defined in [11]

Definition 1 (Type tree) A type tree T is a non-empty tree

where each node is labeled by a symbol, called a type. For
any type g ∈ T , we call strict subtype any descendant g′ of
g. g′ is a subtype of g (denoted g′ � g) when g′ is a strict
subtype of g or when g′ = g.

Definition 2 (Object class) Let O be a set of elements
called objects. We call object class any subset of O. A
class 28 is said to be a subclass of type 2 9 if 28 ⊆ 2 9 .

Definition 3 (Type hierarchy) A type hierarchy H over
type tree T is a set of object classes such that O ∈ H ,
and such that each object class ofH is mapped to a unique
type of T . This mapping g : H → T is such that for any
pair 28 , 2 9 of object classes:

• 28 is a subclass of 2 9 iff g(28) is a subtype of g(2 9 )
(and conversely);

• 28 ∩ 2 9 = ∅ iff g(28) is not a subtype of g(2 9 ) (and
conversely).

We say that object > ∈ O is of type g(>) := g(2) where
2 is the smallest (for inclusion ⊆) class of H to which >
belongs.

Definition 4 (Predicate, atoms and fluents) A predicate
? is a symbol, which is associated with:

• An arity ar(?) ∈ N

• A type for each of its arguments. For 8 ∈
{1, . . . , ar(?)}, the type of its argument at position
8 is denoted g? (8) ∈ T

An atom is a predicate for which each argument is asso-
ciated with a symbol, which can be a variable symbol, or
an object of O. When the 8-th argument of the atom is an
object > (associated to type hierarchy H ), then we require
that g(>) = g? (8). The atom consisting of predicate ? and
symbols G1, . . . , Gar(?) is denoted ?(G1, . . . , Gar(?) ).

A fluent is an atom where each argument is associated
an object of O. A state is a set of fluents.

Definition 5 (Action schema and operators) An action
schema is a tuple 0 = 〈pre(0), add(0), del(0)〉, such that
pre(0), add(0) and del(0) are sets of atoms instantiated
with variables only.

An operator o is akin to an action schema, except that the
sets pre(o), add(o) and del(o) are sets of fluents.

This leads us to the main definition of this section, which
crystallizes the elements above.

Definition 6 (PDDL planning problem) A PDDL plan-
ning problem is a pair Π = 〈D,I〉 where D = 〈P,A,T〉
is the domain and I = 〈O,H , �, �〉 is the instance.
The domain D consists of a set P of predicates, a set of

actions schemas A, and a type hierarchy T .
The instance I consists of a set of objects O and an

associated type hierarchy H , as well as two states, � and
�, which are respectively the initial state and goal.



An operator o is applicable in a state B if pre(o) ⊆ B.
The state that results of the application of o on B is B[o] =
(B \ del(o)) ∪ add(o).
A sequence of operators o1, . . . , o= is called a plan for Π

if there exists a sequence of states B0, . . . , B= where B0 = �,
and which is such that, for all 8 ∈ {1, . . . , =}, B8 = B8−1 [o8]
and o8 is applicable in B8−1. Such a sequence of states
(which is unique for each plan) is called a trace. A plan is
called a solution-plan if, in addition to this, � ⊆ B=.

We will say that a fluent ?(>1, . . . , >ar(?) ) is true in state
B iff ?(>1, . . . , >ar(?) ) ∈ B.

2.2 First-Order Temporal Logic

This section introduces the language in which are expressed
the formulas that we attempt to learn throughout this paper.

Syntax Let X be a set of variable symbols, P a set of
predicates, and T a type tree. We define our language
LFTL such that:

k := ∃G ∈ g.k | ∀G ∈ g.k | i

where i ∈ LTL, and LTL is such that:

i := > | ?(G, . . . , G) | ¬i | ©i | ♦i | �i | ©i | ♦i | �i |
iU i | i ∧ i | i ∨ i | i⇒ i

where G is a variable ofX, ? a predicate of P, and g a type.
In the following, we will denote Λ = {∧,∨,⇒,U,©, ♦,�}
the set of all logical operators. For each operator _ ∈ Λ, we
also note ar(_) ∈ {1, 2} the arity of the operator.
This formulation is akin to Linear Temporal Logic on

finite traces (LTLf) [17], where propositional variables are
replaced with first-order predicates and variables. Notice
that we only work with formulas in prenex normal form.

Semantics Any quantifier-free formula i of LTL can be
evaluated against a trace C = (B0, . . . , B=), at any step. When
8 ∈ J0, =K, we write C, 8 |= i to denote that formula i is true
at state B8 of trace C. In that case, temporal modalities, such
as©, ♦, �, etc., are used to reason over the states that follow
or precede the current state B8 .
For instance,©i intuitivelymeans that property i is true

in the next state, while ♦i means that i is eventually true,
in one of the (iterated) successors of the current state. �i
means that i is true from this state on, until the end of the
trace, and i1Ui2 means that i2 is true in some successor
state, and until then, i1 is true. Operators ©, ♦ and � are
the respective past counterparts of the previous connectors:
©i means that i is true in the previous state, ♦i that i is
true in some previous state, and �i that i is true in every
previous state.
To illustrate the language, we introduce the Childsnack

problem, which originates from the International Planning

Competition (IPC). It consists in making sandwiches and
serving them to a group of children, some of whom are
allergic to gluten. Sandwiches can only be prepared in the
kitchen, and then have to be put on trays, which is the only
way they can be brought to the children for service. Among
the following FTL formulas, the first indicates that “All
children will eventually be served” (and will be satisfied
by any solution-plan). The second formula indicates that
every sandwich G will eventually be put on some tray, at a
moment C +1. For every moment that precedes moment C, G
will not be prepared yet (which indicates that the sandwich
is actually put on the tray right after being prepared).

∀G ∈ Child. ♦ served(G) (1)
∀G ∈ Sandwich. ∃H ∈ Tray.

notprepared(G) U © on(G, H) (2)

Temporal modalities can be expressed in terms of one
another - the same way propositional connectors can be ex-
pressed in terms of one another. For any quantifier-free for-
mula i, we have ♦i ≡ >Ui, �i ≡ ¬♦¬i and �i ≡ ¬♦¬i.
This leads us to an inductive definition of the semantics of
our language, for quantifier-free formulas of LTL:

C, 8 |= ?(G, . . . , G) iff ?(G, . . . , G) ∈ B8
C, 8 |= ¬i iff C, 8 6 |= i
C, 8 |= i1 ∧ i2 iff C, 8 |= i1 and C, 8 |= i2

C, 8 |= ©i iff 8 < = and C, (8 + 1) |= i
C, 8 |= ©i iff 8 > 0 and C, (8 − 1) |= i
C, 8 |= ♦i iff ∃ 9 ∈ J0, 8K s.t. C, 9 |= i
C, 8 |= i1Ui2 iff ∃ 9 ∈ J8, =K s.t. C, 9 |= i2

and ∀: ∈ J8, 9 − 1K, C, : |= i1

We write C |= i as a shorthand for C, 0 |= i, which means
that trace C satisfies the formula i, since it is true in the
initial state of C.
A formula k ∈ LFTL is evaluated against instantiated

traces, as defined below:

Definition 7 (Instantiated trace) An instantiated trace is
a pair 〈C,I〉 such that C is a trace where fluents are built on
the objects of the planning instance I.

For any formula q of LFTL, let us denote q [G/H] the
formula of LFTL where each occurrence of H is replaced by
G. The semantics of LFTL is defined as follows:

〈C,I〉 |= ∀G ∈ g.k iff for all > ∈ O s.t. g(>) = g,
〈C,I〉 |= k [>/G]

〈C,I〉 |= ∃G ∈ g.k iff there exists > ∈ O s.t. g(>) = g,
〈C,I〉 |= k [>/G]

〈C,I〉 |= i iff C |= i



where G is a variable, and i is a formula of LTL (thus
quantifier-free).

Note that it is well known that the past modalities do
not change the expressivity of LTL. As a consequence, our
language could have expressed the same properties with-
out modalities ©, ♦ or �. However, as these modalities
can make some properties exponentially more succinct to
express [14], we chose to include them in our language.

2.3 The MaxSAT problem

Let Var be a set of propositional variables. The Boolean
satisfiability problem (SAT) is concerned with finding a
valuation that satisfies a propositional formula q. Proposi-
tional formulas are defined as follows, where G ∈ Var is a
propositional variable:

q := > | G | ¬q | q ∨ q | q ∧ q

The maximum Boolean satisfiability problem (MaxSAT) is
a variant of SAT, in which a valuation of the variables Var
of a set of formulas {q1, . . . , q=} is sought. Each formula
q8 is assigned a weight F(q8) ∈ R ∪ {∞}. The MaxSAT
problem consists in finding a valuation E of Var such that
the sum of the weights of the formulas that are not satisfied
by E is minimal.

3 The LFTL learning problem

In this section, we introduce the main problem we are tack-
ling in this paper. In the following, we use [〈C,I〉 |= k] as
a shorthand for the function equal to 1 if 〈C,I〉 |= k and
equal to 0 otherwise.

Problem 1 LFTL learning
Input: D a domain

T a set of instantiated traces
A ∈ N the maximum number of logical

operators in the output formula
@ ∈ N the maximum number of quantifiers
f : T→ R a function called the score function

Output: A formula k ∈ LFTL such that k has at most
A logical operators, and @ quantifiers, and∑

〈C ,I〉∈T f(〈C,I〉) [〈C,I〉 |= k]
is maximal

Even though the problem above is expressed as an op-
timization problem, various associated decision problems
can be of interest. For example, a problem of interest is
the one where k must be satisfied by all instantiated traces
〈C,I〉 such that f(〈C,I〉) ≥ 0 and falsified by all other
instantiated traces given in input.

Conjecture 1 The decision problem associated to theLFTL
learning problem is NP-hard.

Various authors tried to settle the complexity of prob-
lems related to ours, without always succeeding, even when
dealing with simpler languages. Notable works include [6],
where the authors show interest in the problem of learn-
ing various fragments of LTL. Even though the learning
problems associated to several fragments were shown to be
NP-complete, the complexity of the problem associated to
the whole language is still open.

Membership in PSPACE Given an environment 4, a
trace C, and a formula i ∈ LTL, checking that C, 4 |= i

can be done in space polynomial in |C |, |4 | and |i | (ex. [7]).
The model-checking of k ∈ LFTL against some 〈C,I〉 can
be done by enumerating all relevant environments 4 ∈ O@ ,
and checking that C, 4 |= i, where i is the quantifier-free
part of k. As a consequence, the LFTL learning problem
is in PSPACE. Even though this shows membership, the
potential PSPACE-hardness of our problem is still an open
problem.

Score function The choice of the score function allows
us to express preferences on which traces are the most im-
portant to capture in the output formula, and which traces
are the most important to avoid. In the rest of this article,
we will say that an instantiated trace 〈C,I〉 is positive iff
f(〈C,I〉) ≥ 0. Otherwise, the instantiated trace is said to
be negative.

4 Planning problem preprocessing

We present in this section the transformations we bring
to the PDDL planning problem before it is passed to our
algorithm for learning LFTL formulas. As our algorithm is
based on a compilation of the LFTL learning problem into
MaxSAT, reducing the size of the compiled form is crucial
for it to run in reasonable time.

Predicate splitting Each predicate is split into several
predicates of size 2, in order to curb the number of fluents
while conserving the links between pairs of objects. This
allows us to synthesize formulas containing predicates of
high arity, while keeping the number of quantifiers of the
formula low.
Concretely, a predicate of the form ?(G, H, I) will be

split into newly-created predicates ?12 (G, H), ?13 (G, I), and
?23 (H, I). Notice that mathematically, predicate splitting
leads to significantly fewer fluents than if the task was to
be grounded as is: for a predicate of arity = ≥ 2, to be
grounded with instance I, there are $ (=2 |O|2) associated
fluents, while there would be $ ( |O|=) if the predicate was
not split.



Even though the planning model thus obtained is less
rich than the original one, we argue that predicate splitting
allows us to learn formulas that would be otherwise out of
computational reach of our procedure.

Goal predicates The language LFTL naturally allows us
to reason on the initial state. However, in its current state,
it does not allow reasoning on the goal conditions, which
depend on the instance and are trace-agnostic.
We fix this issue by introducing goal predicates. For

every predicate ? ∈ P, we introduce the predicate ?� .
Then, for each instance I, we introduce the latent state BI ,
which is intuitively a set of fluents that are true in every
state of every trace associated to I.
For every fluent ?(>1, . . . , >ar(?) ) of the goal state � of
I, we add the fluent ?� (>1, . . . , >ar(?) ) to BI .

For readability reasons, rather than writing
?� (>1, . . . , >ar(?) ), we will often denote this using
a (fictitious) modality named Goal. We thus write
Goal

(
?(>1, . . . , >ar(?) )

)
, as this is a clearer way to indicate

that ?(>1, . . . , >ar(?) ) is true in any goal state.

Equality predicates In addition to goal predicates, we
also add to the latent state equality predicates. These are
simply predicates of the form =g (G, H), where g is a type.
During the preprocessing of instantiated trace 〈C,I〉, we
add the fluents =g (>) (>, >) to the latent state, for every
object > ∈ O.

5 Topology-based guiding

TL chains An interesting representation for formulas i of
LTL is a representation as TL chains. They are the adapta-
tion to our language of the notion of chain [13, 19], which is
useful for representing formulas of modal or propositional
logic.
A TL chain is a Directed Acyclic Graph (DAG) which

has three types of nodes: logical connector nodes (repre-
sented as ◦ in the example of Figure 1), predicate nodes
(represented as �) and variable nodes (represented as �). In
order to represent a correct LTL formula, logical connec-
tor nodes can only be children of logical connector nodes,
predicate nodes children of logical connector nodes, and
variable nodes children of predicate nodes. We also im-
pose that every leaf is a variable node. In addition, to stay
consistent with our language and the choices we made in
Section 4, we only work with TL chains that are binary
trees, whose inner nodes have exactly two children.
By assigning a symbol of the correct type (i.e., a logical

connector, a predicate symbol or a variable) to each node,
we end up with a representation of a LTL formula. Fig-
ure 1 shows the representation as a TL chain of the formula
(@(E, D) ∧ A (I, H)) U ?(C, G).

For each connector node 8 of the TL chain, we will denote
succ! (8) (resp. succ' (8)) the left (resp. right) child of
node 8. It is guaranteed to exist, even though it might
sometimes be a predicate node. In the case of connectors
U ∈ {¬,©,©, ♦, ♦,�,�} that have arity 1, we will use the
convention that the value of the right successor is ignored
(and will not appear in the LFTL formula that ensues), and
the left successor will be the root of the formula under the
operator U.
In order to alleviate the pressure on the MaxSAT solver,

we impose the topology of the output quantifier-free formula
before encoding the problem into a propositional formula.
This idea was first introduced in [19], in an attempt to speed
up the search for an LTL formula. In addition, we also fix
the quantifiers of the formula before the encoding, as well
as the types they quantify on. At the end of the day, all
that is left to the MaxSAT solver is to “fill in the blanks” in
the TL chains that it is given, so that the associated LFTL
formula fits the input as well as possible.
An interesting aspect of the constraints we impose on the

form of the output formula, is that they force the algorithm
to produce a wide diversity of formulas.

Quantifiers In the rest of the article, for practical rea-
sons, we restrict ourselves to learning formulas of the form
∀G1 · · · ∀G:∃G:+1 · · · ∃G1i, where i is a formula ofLTL, for
which every argument of every predicate is a variable G8 .
This choice makes some properties impossible to express,
and it was made with the aim of limiting the number of
MaxSAT intances to solve, as well as to curb the size of
the MaxSAT encoding. However, as will be shown by our
experimental evaluation, interesting formulas can still be
learnt. Our encoding could be easily modified so that any
sequence of quantifiers can beworkedwith, but we leave the
experimental evaluation of such a program to future work.

6 Reduction to MaxSAT

6.1 Learning algorithm

Algorithm 1 summarizes the procedure that we use to learn
LFTL formulas out of our input. The subroutines work
as follows: gen_TLchains(A) enumerates every TL chain
having exactly A connectors. gen_quantifiers(@) enumerates
sequences of quantifier symbols of size @, such that all
universal quantifiers ∀ appear before existential quantifiers
∃. gen_types(D, @) enumerates every @-combination of
types in the type tree T ofD. Finally, the main subroutine,
find_formula(D, T, d, {&8}, {g8}, f), encodes the problem
of finding an LFTL formula fitting the instantiated traces
of T, with the constraints imposed by the TL chain d, the
quantifiers {&8}, and the types {g8}. find_formula then
returns (one of) the best formula(s) it finds, or the token
FAIL is none is found.
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Figure 1: A TL chain example, as well as a possible assignation of symbols to its nodes. The TL chain on the right has
been assigned symbols to every one of its nodes, and represents the formula (@(E, D) ∧ A (I, H)) U ?(C, G)

Algorithm 1: LFTL learning
Input: Domain D, traces T, parameters A, @, and

function f
Output: A set of LFTL formulas
found_formulas := [ ]
for d ∈ gen_TLchains(A) do

for &1, . . . , &@ ∈ gen_quantifiers(@) do
for g1, . . . , g@ ∈ gen_types(D, @) do

k ←
find_formula(D, T, d, {&8}, {g8}, f);
if k ≠ FAIL then
found_formulas.add(k);

end
end

end
return found_formulas

6.2 Preliminaries to the encoding

Notion of environment The constraints require us to rea-
son on which combinations of objects may satisfy a formula
or not. Indeed, as we work with a logic reminiscent of first-
order logic (on finite domains), we are required to reason
on various sets of objects at once. We now introduce the
concept of environment, which allows us to work on assig-
nations of (sets of) objects to variables of the formula.

Let us suppose that the formula we try to synthesize
ranges over the variables X = (G1, . . . , G@). In addition,
let I be an instance, with objects O = {>1, . . . , > |O |}. We
call a partial environment any assignation of some of the
variables G1, . . . , G@ to an object of O. Let us denote var(4)
the variables that are assigned an object within the partial
environment 4. When var(4) = X, we simply say that 4 is
an environment.

We denote any (partial) environment 4 = {G1 :=
>81 , . . . , G@ := >8@ }, where 81, . . . , 8@ ∈ J1, |O|K.
We also denote ?(G, H) [4] the grounding of an atom

?(G, H) by an environment 4 such that G, H ∈ var(4). If
4 = {G := >1, H := >2, . . .}, then ?(G, H) [4] = ?(>1, >2).
By extension, the formula obtained when grounding each

atom of i with 4 is written i[4].
The main difficulty that rises when working with envi-

ronments is that there are |O|@ different environments. As
O can be large, the number of environments being exponen-
tial in the number of quantifiers quickly makes the problem
intractable, if no restriction is posed. This is why we ensure
that each variable of the LFTL formula to learn is assigned
a type, so that not every environment has to be considered
during search: the types are chosen before proceeding to
the encoding.

Variables Our MaxSAT encoding is built on the set of
variables that follows. When possible, we use the following
conventions, as closely as possible: nodes of the FL-chain
are denoted by 8 when they are logical connectors (repre-
sented by© in Figure 1), by ℓwhen they are predicate nodes
(represented by ♦), and by E when they are first-order vari-
able nodes (represented by �). A trace is denoted by C, and
a position in this trace is denoted by : (i.e., the :-th state).
Moreover, 9 is an index for a variable of the quantifiers, and
? is a predicate.
This leads us to the following variables, as will be used

in the MaxSAT encoding. Greek letters denote decision
variableswhile latin characters are for “technical” variables.

◦ HC ,:
8
[4]: In position : of trace C, with environment 4,

the formula rooted at node 8 is true.

◦ Xℓ
9,E

: The E-th variable of predicate node ℓ is the
variable of quantifier 9 .

◦ \ ?
ℓ
: The predicate of node ℓ is ?.

◦ _@
8
: The logical connector at node 8 is @.

◦ BC : Trace C is currently satisfied by the first order for-
mula

“Exactly one” constraints In the encoding of a problem
into SAT, some situations require that at most one variable,
out of a set of variables, is true. There exist encodings
that are more efficient than the naive one to define such
“at most one” constraints: see for instance [10, 16] for a



survey on these encodings. Like many other solvers, the
MaxSAT solver that we use proposes a built-in function
for this. More specifically, it offers a built-in function for
exactly one constraints, where exactly one variable of a set
must be true in a model of the formula.
In the following, we will denote ExactlyOneB∈((EB) the

set of propositional constraints enforcing that at most one
of the variables of {EB | B ∈ (} is true.

6.3 Core constraints

Some of the constraints below are adapted from [8, 19, 15],
which are concerned with LTL. Our main contribution is
the adaptation of the encoding to our languageLFTL, which
differs from LTL by its tighter links with PDDL planning
models through first-order components.
In the following, we suppose that an empty TL chain d

has been computed, and that the associated quantifiers and
types have been decided. We will denote = its number of
connector nodes, and< its number of predicate nodes. As a
consequence, there are 2< variables nodes. As previously,
the number of quantifiers is denoted @. The first 1 ≤ @

quantifiers are universal, while the other are existential.
We also suppose that the types on which the quantifiers

range, denoted g1, . . . , g@ , are already chosen. As a con-
sequence, in this section, the set of relevant environments
for instance IC associated to trace C, denoted �IC , only con-
sists of environments of the form {GD := >D}1≤D≤@ where,
g(>D) = gD , for D ∈ J1, @K.

Syntactic constraints This section describes the con-
straints that ensure that the formula is syntactically well-
formed.
The following constraints ensure that every logical con-

nector node has exactly one logical connector assigned, and
every predicate node has exactly one predicate, respectively.
Recall that Λ is the set of all logical operators.∧

8≤=
ExactlyOne2∈Λ (_28 ) (3)∧

ℓ≤<
ExactlyOne?∈P (\

?

ℓ
) (4)

Finally, the following constraints force each argument
of each predicate to be bound to a variable on which the
formula quantifies.∧

ℓ≤<

∧
B∈{1,2}

ExactlyOne 9≤1 (Xℓ9,B) (5)

Semantic constraints These constraints ensure that the
formula found by the solver is consistent with the traces. It
mimics the model-checking algorithm for modal logic.
The following clauses ensure that the formula k that is

synthesized is consistent with the traces of T. This is made

in accordance with the environments imposed by the quan-
tifier, which are iterated upon. The variable BC is true iff for
every required environment 4, i [4] is satisfied by C (where
i [4] is the evaluation of formula i in environment 4, and
i is the quantifer-free part of the formula we synthesize).
Thus, for every trace C ∈ T, we add the following:

BC ⇔

©«
∧
>1∈O1· · ·
>: ∈O:

∨
>:+1∈O:+1· · ·
>@ ∈O@

H
C ,1
1 [{GD := >D}1≤D≤@]

ª®®®®®¬
(6)

The following constraints ensure that formulas that con-
sist of a single literal (i.e., a positive or negative fluent) are
consistent with the H variables, that give the truth value of
a trace at a certain position in the trace, at each node of the
TL chain.
Such constraints appear once for every trace C ∈ T, for

every position : ≤ |C | of this trace, for every predicate
node ℓ ≤ < and every predicate ? ∈ P, for every pair
of quantifiers (positions) 91, 92 ≤ @, and for each relevant
environment 4 ∈ �IC .

\
?

ℓ
∧ Xℓ91 ,1 ∧ X

ℓ
92 ,2 ⇒

{
H
C ,:

ℓ
[4] if C [:] |= ?(G 91 , G 92 ) [4]

¬HC ,:
ℓ
[4] otherwise

(7)
The constraints sketched in equations (8) to (11) appear

once for each connector node 8 ≤ = of the formula, each
position : ≤ |C | of each trace C ∈ T, and for each environ-
ment 4 ∈ �IC . They ensure that the logical operators are
correctly interpreted.
In the case where the logical connector at node 8 is a

negation ¬, we have:

_¬8 ⇒
(
H
C ,:
8
[4] ⇔ ¬HC ,:succ! (8) [4]

)
(8)

In the case of Δ ∈ {∧,∨,⇒}:

_Δ8 ⇒
(
H
C ,:
8
[4] ⇔

(
H
C ,:

succ! (8) [4] Δ H
C ,:

succ' (8) [4]
))

(9)

In the case of the next operator©, we have the following:

_
©
8
⇒

(
H
C ,:
8
[4] ⇔ H

C ,:+1
succ! (8) [4]

)
(10)

with the convention that HC , |C |+1succ! (8) [4] is replaced by⊥ during
the encoding itself.
In the case of the finally operator ♦:

_♦
8
⇒

©«H
C ,:
8
[4] ⇔

∨
:′

:≤:′≤ |C |

H
C ,:′

succ! (8) [4]
ª®®®¬ (11)

The case of the temporal operators �, ©, ♦, � and U can
be encoded in a way that is similar to the constraints above.



Well-formed fluents constraints The following con-
straints ensure that, in the output formula k, there is a
consistency between the types of the variables and the argu-
ments of predicates are assigned to. Otherwise said, when
a variable G of type g is chosen to be the E-th argument of
a predicate ? that occurs in k, we require that g = g? (E).
This can be done through the following constraints:∧

9≤@

∧
ℓ≤<

∧
?∈P

∧
9≤@

∧
E≤2

g? (E)≠g 9

¬\ ?
ℓ
∨ ¬Xℓ9,E (12)

Weights for the MaxSAT solver Recall that we wish to
find a formula k that maximizes the following function:∑

〈C ,I〉∈T
f(〈C,I〉) [〈C,I〉 |= k]

The objective of the MaxSAT solver is to minimize the
total weight of the falsified soft clauses. As such, for each
instantiated trace 〈C,I〉, we add the clause BC , with weight
f(〈C,I〉). This penalizes formulas that falsify traces with a
positive score, while rewarding formulas that falsify traces
with a negative score.

Pruning non-discriminatory formulas With a given
configuration of TL chain, quantifiers and types, it is not
guaranteed that there exists a formula k that captures (some
of) the positive traces while falsifying (some of) the neg-
ative traces. Without further precautions, our algorithm
can output formulas that are true on all traces, or false on
all traces. These formulas are often tautologies or unsat-
isfiable, and still have a non-zero score as they completely
capture the positive or negative traces.

The following clauses ensure that at least one positive
trace and one negative trace are captured:∨

C ∈T
f (C) ≥0

BC ∧
∨
C ∈T

f (C)<0

¬BC (13)

6.4 Formula quality enhancement

The constraints presented in this section filter the solutions
so that less interesting formulas, or formulas that could be
computed by a run of our algorithm with smaller parame-
ters, are barred from being output.

Syntactic redundancies prevention These constraints
prevent idempotent and involutive modalities and operators
from being chained in the output formula. These include
the negation ¬, as well as the temporal operators ♦ (for
which ♦♦i ≡ ♦i) and � (which is, likewise, idempotent).
In order to prevent the operator U ∈ {¬, ♦, ♦,�,�} from
appearing in a node of the TL chain and its left-successor,

we add the following constraints, when possible (i.e. when
both 8 and succ! (8) are defined):

¬_U8 ∨ ¬_Usucc! (8) (14)

In addition, we prevent redundancies of the form
?(G, H) Δ ?(G, H), where Δ ∈ {∧,∨,U,⇒} is a binary oper-
ator. In every case, there exists a smaller (sub-)formula that
can be found and that expresses the same thing, without the
redundant atom. For each connector node 8 which has two
predicate nodes as children, denoted as ℓ; := succ! (8) and
ℓA := succ' (8), we add the following clauses:∧
?∈P

∧
91 , 92≤@
92≠ 91

¬
(
\
?

ℓ;
∧ X1

91 ,ℓ;
∧ X2

92 ,ℓ;
∧ \ ?

ℓA
∧ X1

91 ,ℓA
∧ X2

92 ,ℓA

)
The constraints above actually prevent two fluents that

are adjacent (i.e. that are connected by a binary operator)
to be equal, regardless of the actual operator that links them.

Variable visibility As the size of the encoding is expo-
nential in the number @ of expected quantifiers, we wish to
ensure that every variable that we quantify upon in the out-
put formula k also appears in an atom of k. Otherwise, an
equivalent formula could be found by running the algorithm
with fewer quantifiers. This is why we force each variable
to appear at least once in some atom. For space reasons, we
skip the presentation of the constraints.

7 Experiments

This section presents the experiments we ran in order to
assess the performances of our method. The implementa-
tion was done in Python 3.10, using the MaxSAT solver
Z3 [5]. Experiments were conducted on a machine running
Rocky Linux 8.5, powered by an Intel Xeon E5-2667 v3
processor, with a 24-hours cutoff and using at most 16GB
of memory per run. The code of our implementation can
be found online1. The repository also includes tools to
evaluate formulas against a dataset and a planning model.

7.1 Performances of the learning algorithm

To assess the performances of our algorithms, we consid-
ered 6 domains from various editions of the International
Planning Competition (IPC), some of which are described
in Section 7.2. For each of these domains, we generated 10
instances that model problems with similar goals. We then
used 5 planners from the IPC to generate plans for each in-
stance, that our algorithm converted to traces. On average,
plans had 10.2 operators, but some instances include plans
of size up to 23.

1https://github.com/arnaudlequen/LearningEngine

https://github.com/arnaudlequen/LearningEngine


Table 1: Average amortized time in seconds (s) required to
learn a single formula from our dataset, depending on the
quantifiers imposed and the maximum number of logical
operators. Values in the table represent the total running
time of the algorithm, divided by the total number of for-
mulas found. This represents the average time between two
formula outputs. Entries labeled by a dot (.) represent
training instances that reached the time cutoff.

|i | Quantifiers
∀ ∃ ∀∀ ∀∃ ∃∃

2 4.2 4.3 36.5 41.0 34.8
3 9.8 8.7 53.8 56.9 48.7
4 22.2 20.5 . . .

We built our training instances by selecting 3 planning
instances of each domain, and the associated traces for each
planner - for a total of 15 instantiated traces per training
instance. We then created the tasks of finding a formula
recognizing the behavior of each planner, and ran our al-
gorithm on each such task. The remaining instances were
used for our test set.
The aim of these experiments was to test our algorithm

in a setting where it would struggle. Indeed, planners often
output plans that are similar to each others, as they are
close to optimal, and do not exhibit particularly distinctive
behaviors. This makes finding a formula that perfectly
recognizes the behavior of a planner hard. Nonetheless, our
algorithm still managed to output formulas that imperfectly
recognize a planner’s behaviour.
The average amortized times to synthesize a formula on

our dataset are summarized in Table 1. In our tests, a
formula was found in 87.5% of the solving attempts of our
algorithm. Since 73.2% of the running time is dedicated to
the encoding, we ask the MaxSAT solver to output multiple
solutions for each encoding.

7.2 Examples of learnt formulas

In this section, we present some formulas that have been
learnt by our algorithm. We considered three domains
among the ones used in our data set. For the first two
domains, since the plans found by the 5 planners were all
very similar, we handcrafted various agents that tackle the
problem in a distinctive way. We kept off-the-shelf planners
for the last domain. We then built sets of plans in a similar
way as in the previous section.

Spanner Instances of the Spanner domain involve an op-
erator that has to go from a shed to a gate to tighten some
nuts, passing through a sequence of locations where single-
use spanners can be picked up. Once a location is left, it
can not be returned to. Thus, collecting enough spanners
before reaching the gate is seminal for solving the problem.

We developed three different behaviours for this domain.
Agent ALL picks every possible spanner on its way to the
gate, while agent SME picks exactly as many spanners as
are needed to tighten the nuts at the gate. Agent SGL takes
a single spanner and rushes to the gate, and can then only
tighten one nut.

Among the formulas that perfectly recognize plans be-
longing to agent ALL, we have the following:

∀G ∈ Spanner. ∃H ∈ Operator. ♦� carrying(H, G) (15)
∀G ∈ Spanner. ∃H ∈ Location. at(G, H) ∧ ♦¬at(G, H) (16)

Formula (15) expresses that every spanner will be picked
up by the (only) operator and carried for the rest of the
plan, and Formula (16) expresses that every spanner will be
moved from its initial position at some point.

Even though we also managed to learn a formula that
perfectly discriminates agent SGL from the others, we failed
to learn a formula completely capturing SME’s behaviour.

When searching formulas with a single variable, we split
the predicates so that the maximum arity of a fluent is 1.
Our algorithm output the following formulas, which were
learnt in a few seconds, and completely characterize the
behavior of agent ALL:

∀G ∈ Spanner. ♦ carrying2 (G) (17)
∀G ∈ Spanner. useable(G) U carrying2 (G) (18)

Predicate splitting allows us to obtain a concise formula,
where the focus is clear (every spanner G is eventually car-
ried), as uninformative elements (who carries the spanner)
are omitted.

Childsnacks Domain Childsnacks, as introduced in Sec-
tion 2, consists in making sandwiches and serving them to
a group of children, some of whom are allergic to gluten.
Sandwiches can only be prepared in the kitchen, and then
have to be put on trays, which is the only way they can be
brought to the children.

We designed three different agents that solve Childsnacks
instances. Agents NGF and NGL compute solution plans
of minimal size, and differ in that agent NGF makes sand-
wiches with no gluten first, and agent NGL makes sand-
wiches with no gluten last. Both agents make all sand-
wiches, put them on a tray, then serve the children. Agent
GS greedily serves children: as soon as a sandwich is made,
it is put on a tray and brought to a child. It also prioritizes
gluten-free sandwiches.

In every instance, 2 trays are initially in the kitchen.
The only difference between instances is in the number of
children to serve, the smallest having 2. This is, however,
enough to learn a wide variety of formulas that perfectly
recognize the behavior of agent GS (among others) on our



test set. Such formulas include, for instance, the following:

∀G ∈ Kitchen. ∃H ∈ Tray. ♦(at(H, G) ∧ ♦¬at(H, G)) (19)
∀G ∈ Kitchen. ∃H ∈ Tray.♦(¬at(H, G) ∧ ©at(H, G)) (20)

Formula (19) expresses that Agent GS eventually comes
back to the kitchen with some tray H, even though the tray
was brought out of the kitchen at some point in the past.
Formula (20) expresses the same idea, but pinpoints the
moment when a tray is brought back to the kitchen.
Both formulas manage to perfectly capture our test set,

but do not perfectly capture our training set. This is due to
the fact that the smallest instance of our training set contains
as many children as there are trays, and thus, no tray has to
be brought back to the kitchen. Our use of a reduction to
MaxSAT allows us to be resilient to this kind of edge cases,
and the formulas that are learnt are satisfactory despite not
perfectly fitting the training set.
Even though our algorithm managed to learn concise

formulas that perfectly capture agent NGL’s behaviour, it
failed to find in reasonable time a formula that discriminates
agent NGF’s behaviour with reasonable accuracy.

Rovers Domain Rovers simulates a planetary exploration
mission, where a fleet of mobile rovers has to navigate
between various waypoints on a planet to collect data or
samples, and to transmit the data back to a lander. The
rovers have instruments, which have to be calibrated before
they can collect data.
The set of instances we designed all required a single

rover to collect two kinds of samples, and to take a picture
of an object. The only differences lie in the topology of the
planet and the positions of objectives.
For this domain, we resorted to five different planners

from the IPC 2018 and 2023 to generate plans, namely
BFWS, Odin, TFTM-ArgMax, LAMA and DecStar. Our
algorithm managed to learn the following formula (among
others), which recognizes the plans of planner BFWS with
93.3% accuracy. The only traces that have been wrongfully
recognized are traces of TFTM-ArgMax.

∀G ∈ Rover.∀H ∈ Waypoint.
Goal(communicated_rock_data(H))
⇒ ©have_rock_analysis(G, H) (21)

∀G ∈ Rover.∃H ∈ Store.store_of(H, G) ∧ ©full(H) (22)

The formulas above express the fact that BFWS consistently
collects samples as fast as possible, and starts by collecting
the rock samples. By opposition, other planners tend to start
by calibrating the instruments required to take the picture,
before proceeding to explore the planet.

8 Conclusion

In this paper, we have presented a method to learn temporal
logic formulas that recognize agents based on examples of
their behaviours. We showed that such formulas can be
learned using an algorithm that boils down to a reduction to
MaxSAT, and that very few examples are sometimes enough
to perfectly capture the behaviour of an agent on instances
that can differ from the ones used in the training set. This
justifies the cost of resorting to a first-order language, which
generalizes to new instances.
In future works, we wish to tailor our algorithm and our

datasets so that they can generate domain-specific control
knowledge. Some other authors [2] have expressed search
control knowledge in a language similar to ours, with the
aim of guiding the search of a planner designed to use such
knowledge. While this knowledge must be written by a
human operator, previous works show that it could also be
generated automatically [4].
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