
Actes JIAF 2024

Backward explanation via redefinition of predicates

Léo Saulières Martin C. Cooper Florence Dupin de Saint-Cyr
IRIT, University of Toulouse III, France
{first name}.{last name}@irit.fr

Résumé
Les ‘History eXplanations based on Predicates’

(HXPs) étudient les historiques de comportement
d’un agent ayant appris par renforcement à travers
le prisme de prédicats [21]. Pour ce faire, un
score d’importance est calculé pour chaque action
de l’historique. Les actions les plus importantes sont
alors affichées à l’utilisateur. Le calcul de score
d’importance étant difficile (#W[1]-dur), il est néces-
saire pour des historiques longs d’approximer les
scores, au détriment de leur qualité. Aussi, nous
proposons une autre méthode intitulée ‘Backward-
HXP’ afin de fournir des explications pour ces his-
toriques, et ce sans avoir à approximer les scores.
Les expérimentations confirment la pertinence des
‘Backward-HXP’.

Abstract
History eXplanation based on Predicates (HXP),

studies the behavior of a Reinforcement Learning
(RL) agent in a sequence of agent’s interactions with
the environment (a history), through the prism of
an arbitrary predicate [21]. To this end, an action
importance score is computed for each action in the
history. The explanation consists in displaying the
most important actions to the user. As the calculation
of an action’s importance is #W[1]-hard, it is neces-
sary for long histories to approximate the scores, at
the expense of their quality. We therefore propose
a new HXP method, called Backward-HXP, to pro-
vide explanations for these histories without having
to approximate scores. Experiments confirm the use-
fulness of Backward-HXP.

1 Introduction

Nowadays, Artificial Intelligence (AI) models are
used in a wide range of tasks in different fields, such
as medicine, agriculture and education [12, 8, 4].
Most of these models cannot be explained or in-
terpreted without specific tools, mainly due to the
use of neural networks which are effectively black-
box functions. Numerous institutions [17, 9] and
researchers [7, 15] have emphasized the importance
of providing comprehensible models to end users.
This is why the eXplainable AI (XAI) research field,
which consists in providing methods to explain AI
behavior, is flourishing. In this context, we propose
a method for explaining AI models that have learned
using Reinforcement Learning (RL).

In RL, the agent learns by trial and error to perform
a task in an environment. At each time step, the agent
chooses an action from a state, arrives in a new state
and receives a reward. The dynamics of the environ-
ment are defined by the non-deterministic transition
function and the reward function. The agent learns
a policy 𝜋 to maximize its reward; this policy as-
signs an action to each state (defining a deterministic
policy). Our eXplainable Reinforcement Learning
(XRL) method is restricted to the explanation of de-
terministic policies.

Various works focus on explaining RL agents us-
ing a notion of importance. To provide a visual sum-
mary of the agent’s policy, Amir and Amir [2] select
a set of interactions of the agent with the environment

https://orcid.org/https://orcid.org/0000-0002-4800-9181
https://orcid.org/https://orcid.org/0000-0003-4853-053X
https://orcid.org/https://orcid.org/0000-0001-7891-9920

(sequences) using the “state importance” [5]. From
a set of sequences, Sequeira et Gervasio propose
to learn a set of information, to deduce interesting
elements to show the user in the form of a visual
summary [22]. Using a self-explainable model, Guo
et al. determine the critical time-steps of a sequence
for obtaining the agent’s final reward [11].

To explain an RL agent, explanation must cap-
ture concepts of RL [16]. To this end, the HXP
method [21], consists of studying a history of agent
interactions with the environment through the prism
of a certain predicate. A predicate 𝑑 can repre-
sent any partial description of states. This XRL
method answers the question: “Which actions were
important to ensure that 𝑑 was achieved, given the
agent’s policy 𝜋?". This paper continues the work
on this method, by proposing a new way of defining
the important actions of a history, called Backward-
HXP (B-HXP). Specially, B-HXP was investigated
because of the limits of (forward) HXP in explaining
long histories.

The paper is structured as follows. The theoreti-
cal principle of HXP is outlined in Section 2, before
defining B-HXP in Section 3. Section 4 presents
the experimental results carried out on 3 problems.
Section 5 presents related works and Section 6 con-
cludes.

2 HXP

An RL problem is modeled using a Markov Decision
Process [23], which is a tuple ⟨S,A, 𝑅, 𝑝⟩. S rep-
resents the state space andA the action space. 𝐴(𝑠)
denotes the set of available actions to perform from 𝑠.
𝑅 : S×A → R and 𝑝 : S×A → 𝑃𝑟 (S) are respec-
tively the reward function and the transition function
of the environment. 𝑝(𝑠′ |𝑠, 𝑎) represents the prob-
ability of reaching state 𝑠′, having performed action
𝑎 from state 𝑠. 𝜋 : S → A denotes a deterministic
policy that maps an action 𝑎 to each state 𝑠; thus,
𝜋(𝑠) is the action performed by the agent in state
𝑠. Starting by doing an action 𝑎 from a state 𝑠, the
probability of a state 𝑠′ is the product of the proba-
bilities along the current path reaching 𝑠′ according
to 𝜋 and 𝑝. In the following, we use the function
𝑛𝑒𝑥𝑡 to compute the next possible states (associated

with their probabilities) given a set of (state, proba-
bility) pairs 𝑆: 𝑛𝑒𝑥𝑡𝜋,𝑝 (𝑆) = {(𝑠′, 𝑝𝑟 × 𝑝(𝑠′ |𝑠, 𝑎))
such that (𝑠, 𝑝𝑟) ∈ 𝑆, 𝑎 = 𝜋(𝑠) and 𝑝(𝑠′ |𝑠, 𝑎) ≠ 0}.
In order to compute the set of final states reach-
able at horizon 𝑘 using the agent’s policy 𝜋 from
a set of states 𝑆, the function succ𝑘𝜋,𝑝 is defined
recursively by 𝑠𝑢𝑐𝑐0

𝜋,𝑝 (𝑆) = 𝑆 and 𝑠𝑢𝑐𝑐𝑛+1𝜋,𝑝 (𝑆) =
𝑛𝑒𝑥𝑡𝜋,𝑝 (𝑠𝑢𝑐𝑐𝑛𝜋,𝑝 (𝑆)).

HXPs provide to the user important actions for
the respect of a predicate 𝑑, given an agent’s policy
𝜋, by computing an importance score for each ac-
tion in the history [21]. The language used for the
predicate is based on the features that characterize a
state. We consider a set of features F = { 𝑓1, ..., 𝑓𝑛},
where each feature 𝑓𝑖 has a range of values defined
by a domain 𝐷𝑖 . The feature space is therefore
F = 𝐷1 × ... × 𝐷𝑛. The state space S is a subset
of F. A predicate is given by a propositional formula
with literals of the form 𝑙𝑖, 𝑗 , where 𝑙𝑖, 𝑗 means that
the feature 𝑓𝑖 takes the value 𝑗 in domain 𝐷𝑖 . The
importance score represents the benefit of perform-
ing an action 𝑎 from 𝑠 rather than another action
𝑎′ ∈ 𝐴(𝑠)\{𝑎}, where this benefit is the probability
of reaching a state at a horizon of 𝑘 that satisfies 𝑑.
To evaluate an action we first require the notion of
utility of a set of (state, probability) pairs.

Definition 1 (utility). Given a predicate 𝑑, the utility
𝑢𝑑 of a set of (state, probability) pairs 𝑆 is:

𝑢𝑑 (𝑆) =
∑︁

(𝑠, 𝑝𝑟) ∈𝑆,𝑠 |=𝑑
𝑝𝑟

Finally, the importance of an action 𝑎 from a state
𝑠 is defined as follows.

Definition 2 (importance). Given a predicate 𝑑, an
agent’s policy 𝜋, a transition function 𝑝, the impor-
tance score of 𝑎 from 𝑠 at horizon 𝑘 is defined by:

𝑖𝑚𝑝𝑘𝑑, 𝜋, 𝑝 (𝑠, 𝑎) = 𝑢𝑑 (𝑠𝑢𝑐𝑐𝑘𝜋,𝑝 (𝑆 (𝑠,𝑎)))−
avg

𝑎′∈𝐴(𝑠)\{𝑎}
𝑢𝑑 (𝑠𝑢𝑐𝑐𝑘𝜋,𝑝 (𝑆 (𝑠,𝑎′))) (1)

where avg is the average and 𝑆 (𝑠,𝑎) is the set of
reachable states (along with their probabilities) from
𝑠 by performing action 𝑎. Formally, we have:

𝑆 (𝑠,𝑎) = {(𝑠′, 𝑝(𝑠′ |𝑠, 𝑎)) | 𝑝(𝑠′ |𝑠, 𝑎) ≠ 0}

The importance score lies in the range [−1, 1],
where a positive (negative) score denotes an impor-
tant (resp. not important) action in comparison with
other possible actions. Its computation is #𝑊 [1]-
hard [21], so it is necessary to approximate it, in
particular by generating only part of the length-𝑘
scenarios with the succ function.

Approximate HXP consists in considering the last
𝑛 time steps as deterministic over a horizon 𝑘 , tak-
ing only the most probable transition into account.
Thus, with 𝑏 denoting the maximum number of tran-
sitions from a state-action couple (𝑠, 𝑎) of a given RL
problem, we produce at most 𝑏𝑘−𝑛 scenarios. As a
note, the scenarios generated are not necessarily the
most probable ones, since taking the most probable
transition at each time step does not ensure that the
most probable sequence is obtained.

To handle long histories on problems where the
number of possible transitions is large, i.e. 𝑘 and 𝑏

large, it is necessary to use approximate methods to
provide explanations in reasonable time, at the ex-
pense of only approximating the importance scores.
In the next section, we propose a new way of comput-
ing HXP in a step-by-step backward approach, which
allows us to provide explanations in reasonable time
for long histories, without having to approximate the
scores calculation. As we will see, this leads to other
computational difficulties. The result is thus a novel
method for the explanation of histories with different
pros and cons compared to forward-based HXP.

3 Backward-HXP (B-HXP)

The idea of B-HXP is to iteratively look for the most
important action in the near past of the state that
respects the predicate under study. When an impor-
tant action is found, we look at its associated state to
define the new predicate to be studied. Indeed, by
observing only a subset of the actions in the history
(near past), the horizon for calculating importance
scores is relatively small. In this sense, importance
scores can be calculated exhaustively. The predicate

is then modified so that actions can be evaluated with
respect to a predicate that they can achieve within a
shorter horizon. The following example will be used
throughout this section to illustrate the method.

Example 1. Consider the end of Bob’s day. The
history of Bob’s actions is: [work, shop, watch TV,
nap, eat, water the plants, read]. Bob’s state is rep-
resented by 5 binary features: hungry, happy, tired,
fridge, fuel. Fridge and fuel means respectively that
the fridge is full and that the car’s fuel level is full.
Bob’s last state is: (¬hungry, happy, tired, ¬fridge,
¬fuel) (for the sake of conciseness, Bob’s states are
represented by a boolean 5-tuple. Thus, Bob’s last
state is: (0, 1, 1, 0, 0)) The environment is determin-
istic and the predicate under study is “Bob is not
hungry". We are looking for the 2 most important
actions for Bob not to be hungry. Starting from the
final state, the most important action in the near past
is ‘eat’. We are interested in its associated state,
i.e. the state before doing the action ‘eat’, which is
assumed to be (1, 0, 0, 1, 0). The new predicate de-
duced from this state is “Bob is hungry and has a full
fridge". In the near past of (1, 0, 0, 1, 0), the ‘shop’
action is the most important one (among work, shop,
watch TV and nap) for respecting this new predicate.
To sum up, we can say that the reason that Bob is not
hungry in the final state is that he went shopping (to
fill his fridge) and then ate.

Before describing in detail the B-HXP
method, we introduce some notation.
𝐻 = (𝑠0, 𝑎0, 𝑠1, ..., 𝑎𝑘−1, 𝑠𝑘) denotes a length-
𝑘 history, with 𝐻𝑖 = (𝑠𝑖 , 𝑎𝑖) denoting the state and
action performed at time 𝑖, and for 𝑖 < 𝑗 , 𝐻(𝑖, 𝑗)
denotes the sub-sequence 𝐻(𝑖, 𝑗) = (𝑠𝑖 , 𝑎𝑖 , ..., 𝑠 𝑗).
In this section, we employ the term ‘utility of a
state 𝑠’ to express the utility of the agent’s action
associated with 𝑠 (this action being unique since we
assume a deterministic policy). To define the near
past of a state in 𝐻, it is necessary to introduce the
maximum length of sub-sequences: 𝑙. This length
must be sufficiently short to allow importance scores
to be calculated in a reasonable time. The value
of 𝑙 depends on the RL problem being addressed,
and specifically on the maximal number of possible
transitions from any observable state-action pair,

namely 𝑏. It follows that the lower 𝑏 is, the higher 𝑙
can be chosen to be.

To provide explanations for long histories, we need
a way of defining new intermediate predicates (such
as Bob is hungry and the fridge is full in Example 1).
For this we use Probabilistic Abductive eXplana-
tions, shortened to PAXp [13].The aim of this for-
mal explanation method is to explain the prediction
of a class 𝑐 by a classifier 𝜅 by providing an impor-
tant set of features among F . Setting these features
guarantees (with at probability at least 𝛿) that the
classifier outputs class 𝑐, whatever the value of the
other features. A classifier maps the feature space
into the set of classes: 𝜅 : F → K. We represent
by x = (𝑥1, ..., 𝑥𝑛) an arbitrary point of the feature
space and v = (𝑣1, ..., 𝑣𝑛) a specific point, where
each 𝑣𝑖 has a fixed value of domain 𝐷𝑖 . [13] defines
a weak PAXp as a subset of features for which the
probability of predicting the class 𝑐 = 𝜅(v) is above
a given threshold 𝛿 when these features are fixed to
the values in v. A PAXp is simply a subset-minimal
weak PAXp.

Definition 3 (PAXp [13]). Given a threshold 𝛿 ∈
[0, 1], a specific point v ∈ F and the class 𝑐 ∈ K
such that 𝜅(v) = 𝑐, X ⊆ F is a weak PAXp if:

𝑃𝑟𝑜𝑝(𝜅(x) = 𝑐 | xX = vX) ≥ 𝛿

where xX and vX are the projection of x and v onto
features X respectively and 𝑃𝑟𝑜𝑝(𝜅(x) = 𝑐 | xX =

vX) is the proportion of the states x ∈ F satisfying
xX = vX , that the classifier maps to 𝑐, in other words
|{x ∈ F | xX=vX and 𝜅(x)=𝑐}|/|{x ∈ F | xX=vX}|.

The set of all WeakPAXp for 𝜅(v) = 𝑐 wrt the
threshold 𝛿 is denoted WeakPAXp(𝜅, v, 𝑐, 𝛿, F).
X ⊆ F is a PAXp if it is a subset-minimal weak

PAXp. The set of all PAXp for 𝜅(v) = 𝑐 wrt the
threshold 𝛿 is denoted PAXp(𝜅, v, 𝑐, 𝛿, F).

The idea of using PAXp is to redefine the pred-
icate to be studied for the next sub-sequence as we
progress backwards. In order to fit the PAXp frame-
work we define the classifier 𝜅𝑠, 𝜋, 𝑝,𝑑,𝑘 as a binary
classifier based on the utility of the state 𝑠. We note
𝑢𝑘
𝑑, 𝜋, 𝑝

(𝑠) = 𝑢𝑑 (𝑠𝑢𝑐𝑐𝑘𝜋,𝑝 ({(𝑠, 1)})), the utility of 𝑠

wrt 𝑑 given an horizon 𝑘 , a policy 𝜋 and a transition
function 𝑝. The class of any state x is the result of a

comparison between the utility of 𝑠 and the utility of
x for the respect of 𝑑.

Definition 4 (B-HXP classifier). Given a state 𝑠, a
policy 𝜋, a transition function 𝑝, a predicate 𝑑 and a
horizon 𝑘 . The B-HXP classifier, denoted 𝜅𝑠, 𝜋, 𝑝,𝑑,𝑘 ,
is a function such that: for all x ∈ S,

𝜅𝑠, 𝜋, 𝑝,𝑑,𝑘 (x) =
{
𝑇𝑟𝑢𝑒 if 𝑢𝑘

𝑑, 𝜋, 𝑝
(x) ≥ 𝑢𝑘

𝑑, 𝜋, 𝑝
(𝑠)

𝐹𝑎𝑙𝑠𝑒 otherwise

This classifier is specific to B-HXP. The utility
threshold value depends on the state 𝑠 which is the
state associated with the most important action in
the sub-sequence studied. It is used to generate a
predicate 𝑑′ which reflects a set of states at least as
useful as 𝑠 (with a probability of at least 𝛿) for the
respect of 𝑑. The predicate 𝑑′ can then be seen as a
sub-goal for the agent in order to satisfy 𝑑.

To assess whether a subset X ⊆ F is a PAXp,
it is necessary to calculate the utility of each state
having this subset of features, which involves using
the agent’s policy 𝜋 and the environment transition
function 𝑝. A weak PAXp is then a sufficient subset
of state features which ensures that a state utility is
greater than or equal to the utility of 𝑠 with proba-
bility at least 𝛿. The new predicate is defined as the
disjunction of every possible PAXp from s.

Definition 5. Given a state 𝑠 = (𝑠1, . . . , 𝑠𝑛) ∈ S,
a B-HXP classifier 𝜅 on S, the predicate PAXpred
associated with 𝑠 for a given threshold 𝛿 is:

PAXpred𝜅 (𝑠, 𝛿) =
∨

X∈PAXp(𝜅,𝑠,𝑇𝑟𝑢𝑒, 𝛿,S)

©«
∧
𝑓𝑖∈X

𝑓𝑖 = 𝑠𝑖
ª®¬

Example 1 (Cont). For this history, 𝛿 is set to 1 and
𝑙 is 4. The first sub-sequence studied is: [nap, eat,
water the plants, read]. The most important action
relative to the achievement of “Bob is not hungry"
is ‘eat’, with a score of, say, 0.5 and its associated
state, say, (1, 0, 0, 1, 0). We extract a PAXp, which
includes the features fridge and hungry set to 1. This
means that, whatever the values of the other features,
a state with fridge and hungry set to 1 has (with
100% probability) a utility greater than or equal to
0.5. Now, we study the sub-sequence [work, shop,

Figure 1: B-HXP for the win predicate. The agent is symbolized by a red dot, the dark blue cells are holes
and the destination cell is marked by a star. Actions identified as important are highlighted by a green frame.

watch TV, nap], in which the most important action
to achieve the new intermediate predicate is ‘shop’.

In the backward analysis of 𝐻, the change of pred-
icate allows us to look at a short-term objective to be
reached, thus keeping the calculation of HXP reason-
able. Our method is explained in pseudo-code in Al-
gorithm 1. This algorithm allows us to go backwards
through the history 𝐻, successively determining in
each sub-sequence studied, the important action and
its associated state predicate. The argmax function
is used to find, in a given sub-sequence 𝐻(𝑖, 𝑗) , the
most important action 𝑎, its associated state 𝑠, and
its index in 𝐻. The latter is used to determine the
next sub-sequence to consider. The PAXpred func-
tion is used to generate the new predicate to study in
the next sub-sequence, based on Definition 5. The
process stops when all actions have been studied at
least once, or when the utility of the most important
action in the current sub-sequence is 0. Finally, the
algorithm returns a list of important actions and the
different predicates found.

With B-HXPs, it is interesting to note that the
number of actions to be presented to the user is not
fixed. In the worst-case scenario, a user could end up
with an explanation that refers to all actions as im-
portant. This would happen if it was always the last
action in each subsequence which is the most impor-
tant for achieving the current predicate. However,
this problem was not observed in our experiments.

The computationally hard part of this approach
is the predicate generation. Enumerating all the

Algorithm 1 B-HXP algorithm
Input: history 𝐻, maximal sub-sequence length 𝑙,
agent’s policy 𝜋, predicate 𝑑, transition function 𝑝,
probability threshold 𝛿, state space S
Output: important actions 𝐴, predicates 𝐷

𝐴← [] ; 𝐷 ← []; 𝑢 ← 1
𝑖𝑚𝑎𝑥 ← 𝑙𝑒𝑛(𝐻) ; 𝑖𝑚𝑖𝑛 ← max(0, 𝑖𝑚𝑎𝑥 − 𝑙)
while 𝑖𝑚𝑖𝑛 ≠ 0 and 𝑢 ≠ 0 do

𝑖, 𝑠, 𝑎 ← argmax 𝑖 ∈ [𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥]
(𝑠, 𝑎) = 𝐻𝑖

𝑖𝑚𝑝𝑙
𝑑, 𝜋, 𝑝

(𝑠, 𝑎)

𝑢 ← 𝑢𝑙
𝑑, 𝜋, 𝑝

(𝑠)
𝑑 ← PAXpred𝜅𝑠,𝜋,𝑝,𝑑,𝑙 (𝑠, 𝛿)
𝐴.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑎) ; 𝐷.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑑)
𝑖𝑚𝑎𝑥 ← 𝑖 ; 𝑖𝑚𝑖𝑛 ← max(0, 𝑖𝑚𝑎𝑥 − 𝑙)

end while
return 𝐴, 𝐷

Figure 2: B-HXP for the win predicate. Above: the input history, showing 12 moves (where move = choice
of column) of the agent (yellow) to which the environment (red) responds. Below: the predicates found by
B-HXP corresponding to the four important moves it finds in the history, each highlighted by a green frame.

PAXp’s turns out to be intractable. To support this
assertion, even finding a single AXp (which is a
PAXp with 𝛿 = 1) is in general NP-hard, for example
in the case of a DNF classifier [6]. Also, finding a
single PAXp when 𝛿 < 1 is NP-hard even for decision
trees [3]. A further computational difficulty, specific
to our problem, is that our classifier 𝜅𝑠, 𝜋, 𝑝,𝑑,𝑘 re-
quires, at each call, the computation of the action
utility, which is a #W[1]-hard problem [21] w.r.t.
the parameter 𝑘 .

Thus, we decided to limit the definition of a predi-
cate 𝑑 to the generation of one weak PAXp. To obtain
a predicate 𝑑 in reasonable time, we need to look at a
particular class of weak PAXp, the locally-minimal
PAXps, which are not necessarily subset-minimal.
Formally, a set of features X ⊆ F is a locally-
minimal PAXp if X ∈ WeakPAXp(𝜅, v, 𝑐, 𝛿, F) and
for all 𝑗 ∈ X, X \ { 𝑗} ∉ WeakPAXp(𝜅, v, 𝑐, 𝛿, F)
The findLmPAXp algorithm [13] is used to calculate
a locally-minimal PAXp.

In short, B-HXP keeps the calculation of impor-
tance scores exhaustive, by cutting the length-𝑘 his-
tory into sub-sequences of length 𝑙, starting with the
end. The most important action of a sub-sequence
is retained, and its associated state is used to define
𝑑′, the new predicate to study, using locally-minimal

PAXp. 𝑑′ is then studied in a new sub-sequence.
This process is iterated throughout the history. The
next section presents examples of B-HXP.

4 Experiments

The experiments were carried out on 3 RL problems:
Frozen Lake (FL), Connect4 (C4) and Drone Cov-
erage (DC) [20]. Q-learning was used to solve the
FL problem, and Deep-Q-Network for C4 and DC.
The agents’ training was performed using a Nvidia
GeForce GTX 1080 TI GPU, with 11 GB of RAM.
The B-HXP examples were run on an HP Elitebook
855 G8 with 16GB of RAM (source code available
at: https://github.com/lsaulier/HXP).

The first part of this section describes the problems
and the studied predicates (for more details, see [21]).
The second part presents B-HXP examples.

In the figures, the history is displayed over two
lines. The action taken by the agent from a state is
shown above it. Important actions and their states are
highlighted by a green frame. The third line of fig-
ures 2 and 3 corresponds to the predicates generated
during the B-HXP, where a dark grey cell means that
this feature is not part of the predicate. In Tables 1,

https://github.com/lsaulier/HXP

2 and 3, the importance scores given are w.r.t. either
the initial predicate or the intermediate ones.

4.1 Description of the problems

In FL, the agent moves on the surface of a frozen lake
(2D grid) to reach a certain goal position, avoiding
falling into the holes. The agent can move in any
of the 4 cardinal directions. However, due to the
slippery surface of the frozen lake, the agent may
slip and not end up in the position induced by the
chosen action. Indeed, if the agent chooses a direc-
tion (e.g. up as in the second state of Figure 1), it
has 0.6 probability to go in this direction and 0.2 to
go towards each remaining direction except the op-
posite one (e.g., for up, 0.2 to go left and 0.2 to go
right, as occurred in the scenario of Figure 1 where
the agent moved right in the third state after per-
forming up in the second one). The agent’s state is
composed of 5 features: its position (P) and previous
position (PP) on the map, the position of one of the
two holes closest to the agent (HP), the Manhattan
distance between the agent’s initial position and his
current position (PD), and the total number of holes
on the map (HN). Predicates win, holes and region
were studied. They respectively determine whether
the agent reaches the goal, falls into a hole or reaches
a pre-defined set of map positions.

The C4 game is played on a 6 by 7 vertical board,
where the goal is to align 4 tokens in a row, column
or diagonal. Two players play in turn. An agent’s
state is the whole board. 5 predicates were studied:
win, lose, 3 in a row, prevent 3 in a row and control
mid-column.

In DC, four drones must cover (observe) the largest
area of a windy 2D map, while avoiding crashing into
a tree or another drone. A drone can move in any of
the 4 cardinal directions or not. A drone cover is a
3 × 3 square centered on it. A cover for a drone is
optimal when it does not contain any trees and there
is no overlap with the cover of the other drones.
An agent’s state is made up of its view, a 5 × 5
image centered on it, and its position, represented
by (𝑥, 𝑦) coordinates. Ten predicates for the DC
problem were studied (local and global versions of):
perfect cover, maximum reward, no drones, crash

Table 1: Importance scores in the FL history 1
Predicate Time-step / Importance score

win 8 9 10 11
-0.001 0.04 0.012 0.114

PAXpred𝜅 (𝑠11, 0.7) 7 8 9 10
(a.k.a. purple) 0.006 -0.008 0.102 0.087

PAXpred𝜅 (𝑠9, 0.7) 5 6 7 8
(a.k.a. green) -0.0003 0.0 -0.001 -0.0003

and region. Local versions concern a single agent,
whereas the global versions concern all agents.

4.2 B-HXP examples

To provide B-HXPs in reasonable time, the 𝑠𝑎𝑚𝑝𝑙𝑒

parameter, which corresponds to the maximum num-
ber of states observed for a feature evaluation in the
findLmPAXp algorithm [13], i.e. the predicate gen-
eration, was set to 10 in the following examples. In
other words, to avoid an exhaustive search over F,
the proportion in Definition 3 was computed based
on 10 samples.

A B-HXP (computed in 2 seconds) for a FL history
is shown in Figure 1, with 𝑙=4, 𝛿=0.7. Importance
scores are presented in Table 1. The right action
linked to the state 𝑠11 = {𝑃 = (7, 8), 𝑃𝑃 = (6, 8), 𝐻𝑃 =

(6, 7), 𝑃𝐷 = 13, 𝐻𝑁 = 10} is the most important in
the first sub-sequence studied in order to win. The
predicate, named purple, computed from 𝑠11 with
𝛿 = 0.7 is 𝑃𝐴𝑋𝑝𝑟𝑒𝑑𝜅 (𝑠11, 0.7) = {𝑃𝐷 = 13}. The
states described by the predicate are shown in pur-
ple in Figure 1. In the following sub-sequence, the
down action linked to state 𝑠9 = {𝑃 = (5, 8), 𝑃𝑃 =

(5, 7), 𝐻𝑃 = (6, 7), 𝑃𝐷 = 11, 𝐻𝑁 = 10} is the most
important to respect purple. The predicate, named
green, computed based on 𝑠9 is 𝑃𝐴𝑋𝑝𝑟𝑒𝑑𝜅 (𝑠9, 0.7) =
{𝑃 = (5, 8), 𝑃𝑃 = (5, 7), 𝐻𝑃 = (6, 7)} (the states de-
scribed are shown in green in Figure 1). A predicate
is generic if it is respected by a large number of differ-
ent states. We note that purple describes more states
than green. The latter is not generic enough, which
is reflected in the importance scores, which are close
to 0: whatever the action, it is unlikely to respect this
predicate after 4 time steps. The entire history is not
explored when calculating the B-HXP, as the utility

Figure 3: B-HXP for the perfect cover predicate. The intermediate predicates are shown in the last row. The
rightmost of these states that the blue drone is in row 7 and that the light grey squares are free. The other
intermediate predicates impose the relative positions of two other drones and that some squares are free. The
drones are represented by dots and the trees by green triangles. In the history, a colored cell means that the
area is covered by the drone of the same color and a dark grey cell indicates an overlap of the coverage of
different drones.

Table 2: Importance scores in the C4 history 2
Predicate Time-step / Importance score

win 9 10 11
0.726 0.099 0.16

PAXpred𝜅 (𝑠9, 0.8)
6 7 8

-0.006 0.03 0.113

PAXpred𝜅 (𝑠8, 0.8)
5 6 7

0.003 0.0 0.0

PAXpred𝜅 (𝑠5, 0.8)
2 3 4

0.003 0.0 0.0

of the last state selected 𝑠6 is 0. The selected ac-
tions form a meaningful explanation when we look
at the predicates studied. However, the redefined
predicates fairly quickly become very specific and
probably of little help in explaining why the agent
won.

With 𝑙 set to 3 and 𝛿 to 0.8, a B-HXP (computed
in 10 seconds) for a C4 history is shown in Figure 2.

A large part of the board is ignored in the predicates,
which gives the user an intuition of the type of states
that the agent must reach. Importance scores are
presented in Table 2. Almost all the actions returned
are related to setting up the token alignment leading
to victory, which is interesting because the predicate
win is only studied on the last three states of the his-
tory. The other predicates provide actions linked to
achieving a win. The first redefined predicate (the
rightmost image on the third line of Figure 2) de-
scribes a partial board configuration: from positions
satisfying this predicate, an agent following the learnt
policy has at least 80% chance of achieving a win in
the final position. However, as with FL, apart from
the predicate defined at time-step 9, the other pred-
icates generated seem to be not sufficiently generic,
which can be seen in the scores. Indeed, the second
redefined predicate (the second-from-right image in
the last line of Figure 2) is so specific as to uniquely
determine the exact board configuration (given the
height of columns and the number of tokens played).

Table 3: Importance scores in the DC history 3
Predicate Time-step / Importance score

perfect cover 9 10 11
0.114 0.063 0.056

PAXpred𝜅 (𝑠9, 1)
6 7 8

0.008 0.006 0.002

PAXpred𝜅 (𝑠6, 1)
3 4 5

0.053 -0.013 0.09

PAXpred𝜅 (𝑠5, 1)
2 3 4

0.034 -0.036 0.023

The value of 𝑙 has an important impact on the com-
putation of importance scores. This point is explored
in more detail in the conclusion.

A B-HXP (calculated in 13 seconds) for a DC
history is shown in Figure 3, with 𝑙=3 and 𝛿=1. The
explanation is for the blue drone with the original
predicate that this agent has a perfect cover. The
importance scores are presented in Table 3. The
predicates give a good intuition of the type of state
(position and 5×5 view) the agent is trying to reach.

5 Related Work

XRL methods can be clustered according to the scope
of the explanation (e.g. explaining a decision in
a given situation or the policy in general), the key
RL elements used to produce the explanation (e.g.
states [10, 18], rewards [14, 1]), or the form of the
explanation (e.g. saliency maps [10] or sequence-
based visual summaries [2, 22, 20]).

One approach consists in generating counterfac-
tual trajectories (state-action sequences) and compar-
ing them with the agent’s trajectory. In [1], reward
influence predictors are learnt to compare trajecto-
ries. The counterfactual one is generated based on
the user’s suggestion. In [25], a contrastive policy
based on the user’s question is produced to generate
the counterfactual trajectory. In the MDP context,
Tsirtsis et al. generate optimal counterfactual trajec-
tories that differ at most by 𝑘 actions [24].

EDGE [11] is a self-explainable model. Like
HXP, it identifies the important elements of a se-
quence. However, EDGE is limited to importance

based on the final reward achieved, whereas HXPs
allow the study of various predicates. In addition,
HXP relies on the transition function (which is as-
sumed to be known) and the agent’s policy to explain,
whereas EDGE [11] requires the learning of a pre-
dictive model of the final-episode reward.

6 Conclusion

Our paper is a follow-up to the work carried out
in [21]. HXP is a method that makes it possible to
answer, for a given history, the question: “Which
actions were important to ensure that the predicate
𝑑 was achieved, given the agent’s policy 𝜋?". To do
this, an importance score is computed for each action
in the history. To provide explanations for long his-
tories, without importance score approximation, we
defined an approach named Backward-HXP. Starting
from the end of the history, this involves iteratively
studying a subsequence, highlighting the most im-
portant action in it and defining a new intermediate
predicate to study for the next sub-sequence. The
intermediate predicate is a locally-minimal PAXp as-
sociated to the state where the most important action
took place.

In the experiments, we observed that the generic-
ity of a predicate 𝑑 and the search horizon 𝑙 influence
the importance scores. The more generic the pred-
icate 𝑑, the greater the probability of finding states
with a 𝑙 horizon that respect 𝑑. Thus, the impor-
tance scores generated are significant, regardless of
𝑙. Conversely, a less generic predicate makes it more
difficult to evaluate an action. In this case, the value
of 𝑙 is discriminating. A too specific predicate 𝑑

can lead to insignificant importance scores for the
respect of 𝑑, as the utility of actions is close to 0.
In several histories, notably C4 ones, the predicates
generated are non generic, leading to less interesting
explanations.

Although in the examples the important actions
are often related to the respect of the initial predi-
cate, this is not always the case. If we consider the
first redefined predicate as a possible cause of the
predicate being satisfied in the final state, then the
second redefined predicate is a possible cause of a
possible cause. The notion of causality can quickly

become highly diluted (due to the fact for computa-
tional reasons, we study a single cause at each step).
The user must be aware of this effect when comput-
ing B-HXPs.

HXP and B-HXP offer the user great diversity in
the study of agent behavior through its notion of
predicate. Furthermore, this approach is agnostic
with regard to the agent learning algorithm. As de-
scribed in [21], the strong assumption for the use of
HXP and B-HXP is the knowledge of the transition
function. It must be known during the explanation
phase (not necessarily during training), or at least ap-
proximated, for example using an RL model-based
method.

More experiments are needed to ensure the quality
and scalability of B-HXP, specially in environments
with a large number of transitions. When calculating
a locally-minimal PAXp, the order in which features
are processed is important. A future work would be
to direct the generation of locally-minimal PAXp us-
ing a feature ordering heuristic, such as LIME [19].
In this way, it would be possible to compare the inter-
mediate predicates and check whether this changes
the important actions returned.

Our experiments have shown the feasibility of the
finding important actions in a long sequence of ac-
tions by redefining predicates, working backwards
from the end of the sequence. However, we found
that the intermediate predicates can quickly become
very specific leading to the difficulty of calculating
the importance scores of actions w.r.t. these very
specific predicates. Further research is required to
investigate this point.

Acknowledgement

We would like to thank the reviewers for their perti-
nent comments, which helped to improve the paper
quality.

References

[1] Amal Alabdulkarim and Mark O. Riedl. Ex-
periential explanations for reinforcement learn-
ing. CoRR, abs/2210.04723, 2022.

[2] Dan Amir and Ofra Amir. HIGHLIGHTS:
summarizing agent behavior to people. In AA-
MAS, pages 1168–1176. ACM, 2018.

[3] Marcelo Arenas, Pablo Barceló, Miguel
A. Romero Orth, and Bernardo Subercaseaux.
On computing probabilistic explanations for
decision trees. In NeurIPS, 2022.

[4] Lĳia Chen, Pingping Chen, and Zhĳian Lin.
Artificial intelligence in education: A review.
IEEE Access, 8:75264–75278, 2020.

[5] Jeffery A. Clouse. On integrating apprentice
learning and reinforcement learning. PhD the-
sis, UMass Amherst, 1996.

[6] Martin C. Cooper and João Marques-Silva.
Tractability of explaining classifier decisions.
Artif. Intell., 316:103841, 2023.

[7] Adnan Darwiche. Human-level intelligence
or animal-like abilities? Commun. ACM,
61(10):56–67, 2018.

[8] Ngozi Clara Eli-Chukwu. Applications of arti-
ficial intelligence in agriculture: A review. En-
gineering, Technology & Applied Science Re-
search, 9(4), 2019.

[9] European Commission. Artificial Intelligence
Act, 2021.

[10] Samuel Greydanus, Anurag Koul, Jonathan
Dodge, and Alan Fern. Visualizing and under-
standing Atari agents. In ICML, pages 1787–
1796. PMLR, 2018.

[11] Wenbo Guo, Xian Wu, Usmann Khan, and
Xinyu Xing. EDGE: explaining deep rein-
forcement learning policies. In NeurIPS, pages
12222–12236, 2021.

[12] Pavel Hamet and Johanne Tremblay. Artificial
intelligence in medicine. Metabolism, 69:S36–
S40, 2017.

[13] Yacine Izza, Xuanxiang Huang, Alexey Ig-
natiev, Nina Narodytska, Martin C. Cooper,

and João Marques-Silva. On computing proba-
bilistic abductive explanations. Int. J. Approx.
Reason., 159:108939, 2023.

[14] Zoe Juozapaitis, Anurag Koul, Alan Fern, Mar-
tin Erwig, and Finale Doshi-Velez. Explainable
reinforcement learning via reward decomposi-
tion. In ĲCAI/ECAI workshop on explainable
artificial intelligence, page 7, 2019.

[15] Zachary C. Lipton. The mythos of model in-
terpretability. Commun. ACM, 61(10):36–43,
2018.

[16] Stephanie Milani, Nicholay Topin, Manuela
Veloso, and Fei Fang. A survey of ex-
plainable reinforcement learning. CoRR,
abs/2202.08434, 2022.

[17] White House Office of Science and Technology.
Blueprint for an AI Bill of Rights. 2022.

[18] Matthew L. Olson, Lawrence Neal, Fuxin Li,
and Weng-Keen Wong. Counterfactual states
for Atari agents via generative deep learning.
CoRR, abs/1909.12969, 2019.

[19] Marco Túlio Ribeiro, Sameer Singh, and Car-
los Guestrin. “Why should I trust you?": Ex-
plaining the predictions of any classifier. In
SIGKDD, pages 1135–1144. ACM, 2016.

[20] Léo Saulières, Martin C. Cooper, and Florence
Bannay. Reinforcement learning explained via
reinforcement learning: Towards explainable
policies through predictive explanation. In
ICAART, Vol. 2, pages 35–44, 2023.

[21] Léo Saulières, Martin C Cooper, and Florence
Dupin de Saint Cyr. Predicate-based expla-
nation of a Reinforcement Learning agent via
action importance evaluation. In ECML/PKDD
workshop AIMLAI, 2023.

[22] Pedro Sequeira and Melinda T. Gervasio. Inter-
estingness elements for explainable reinforce-
ment learning: Understanding agents’ capabil-
ities and limitations. Artif. Intell., 288:103367,
2020.

[23] Richard S Sutton and Andrew G Barto. Re-
inforcement learning: An introduction. MIT
press, 2018.

[24] Stratis Tsirtsis, Abir De, and Manuel Ro-
driguez. Counterfactual explanations in se-
quential decision making under uncertainty. In
NeurIPS, pages 30127–30139, 2021.

[25] Jasper van der Waa, Jurriaan van Diggelen,
Karel van den Bosch, and Mark A. Neer-
incx. Contrastive explanations for reinforce-
ment learning in terms of expected conse-
quences. CoRR, abs/1807.08706, 2018.

	Introduction
	HXP
	Backward-HXP (B-HXP)
	Experiments
	Description of the problems
	B-HXP examples

	Related Work
	Conclusion

